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1 MLE and MAP for Regression (Part I)

So far, we’ve explored two approaches of the regression framework, Ordinary Least Squares and
Ridge Regression:

ŵols = arg min
w

‖y − Xw‖22

ŵridge = arg min
w

‖y − Xw‖22 + λ‖w‖22

One question that arises is why we specifically use the `2 norm to measure the error of our predic-
tions, and to penalize the model parameters. We will justify this design choice by exploring the
statistical interpretations of regression — namely, we will employ Gaussians, MLE and MAP to
validate what we’ve done so far through a different lens.

1.1 Probabilistic Model
In the context of supervised learning, we assume that there exists a true underlying model
mapping inputs to outputs:

f : x→ f (x)

The true model is unknown to us, and our goal is to find a hypothesis model that best represents
the true model. The only information that we have about the true model is via a dataset

D = {(xi, yi)}ni=1

where xi ∈ R
d is the input and yi ∈ R is the observation, a noisy version of the true output f (xi):

Yi = f (xi) + Zi

We assume that xi is a fixed value (which implies that f (xi) is fixed as well), while Zi is a random
variable (which implies that Yi is a random variable as well). We always assume that Zi has zero
mean, because otherwise there would be systematic bias in our observations. The Zi’s could be
Gaussian, uniform, Laplacian, etc... In most contexts, we us assume that they are independent
identically distributed (i.i.d) Gaussians: Zi

iid
∼ N(0, σ2). We can therefore say that Yi is a random

variable whose probability distribution is given by

Yi
iid
∼ N( f (xi), σ2)

Now that we have defined the model and data, we wish to find a hypothesis model hθ (parameter-
ized by θ) that best captures the relationships in the data, while possibly taking into account prior
beliefs that we have about the true model. We can represent this as a probability problem, where
the goal is to find the optimal model that maximizes our probability.
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1.2 Maximum Likelihood Estimation
In Maximum Likelihood Estimation (MLE), the goal is to find the hypothesis model that maxi-
mizes the probability of the data. If we parameterize the set of hypothesis models with θ, we can
express the problem as

θ̂mle = arg max
θ

L(θ;D) = p(data = D | true model = hθ)

The quantity L(θ) that we are maximizing is also known as the likelihood, hence the term MLE.
Substituting our representation ofD we have

θ̂mle = arg max
θ

L(θ; X, y) = p(y1, . . . , yn | x1, . . . , xn, θ)

Note that we implicitly condition on the xi’s, because we treat them as fixed values of the data.
The only randomness in our data comes from the yi’s (since they are noisy versions of the true
values f (xi)). We can further simplify the problem by working with the log likelihood `(θ; X, y) =

logL(θ; X, y)
θ̂mle = arg max

θ
L(θ; X, y) = arg max

θ
`(θ; X, y)

With logs we are still working with the same problem, because logarithms are monotonic functions.
In other words we have that:

P(A) < P(B) ⇐⇒ log P(A) < log P(B)

Let’s decompose the log likelihood:

`(θ; X, y) = log p(y1, . . . , yn | x1, . . . , xn, θ) = log
n∏

i=1

p(yi | xi, θ) =

n∑
i=1

log[p(yi | xi, θ)]

We decoupled the probabilities from each datapoints because their corresponding noise compo-
nents are independent. Note that the logs allow us to work with sums rather products, simplifying
the problem — one reason why the log likelihood is such a powerful tool. Each individual term
p(yi | xi, θ) comes from a Gaussian

Yi | θ ∼ N(hθ(xi), σ2)

Continuing with logs:

θ̂mle = arg max
θ

`(θ; X, y) (1)

= arg max
θ

n∑
i=1

log[p(yi | xi, θ)] (2)

= arg max
θ

−

( n∑
i=1

(yi − hθ(xi))2

2σ2

)
− n log

√
2πσ (3)

= arg min
θ

( n∑
i=1

(yi − hθ(xi))2

2σ2

)
+ n log

√
2πσ (4)
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= arg min
θ

n∑
i=1

(yi − hθ(xi))2 (5)

Note that in step (4) we turned the problem from a maximization problem to a minimization prob-
lem by negating the objective. In step (5) we eliminated the second term and the denominator in
the first term, because they do not depend on the variables we are trying to optimize over.

Now let’s look at the case of regression — our hypothesis has the form hθ(xi) = xi
>θ, where θ ∈ Rd,

where d is the number of dimensions of our featurized datapoints. For this specific setting, the
problem becomes:

θ̂mle = arg min
θ∈Rd

n∑
i=1

(yi − xi
>θ)2

This is just the Ordinary Least Squares (OLS) problem! We just proved that OLS and MLE for
regression lead to the same answer! We conclude that MLE is a probabilistic justification for why
using squared error (which is the basis of OLS) is a good metric for evaluating a regression model.

1.3 Maximum a Posteriori
In Maximum a Posteriori (MAP) Estimation, the goal is to find the model, for which the data
maximizes the probability of the model:

θ̂map = arg max
θ

p(true model = hθ | data = D)

The probability distribution that we are maximizing is known as the posterior. Maximizing this
term directly is often infeasible, so we we use Bayes’ Rule to re-express the objective.

θ̂map = arg max
θ

p(true model = hθ | data = D)

= arg max
θ

p(data = D | true model = hθ) · p(true model = hθ)
p(data = D)

= arg max
θ

p(data = D | true model = hθ) · p(true model = hθ)

= arg max
θ

log p(data = D | true model = hθ) + log p(true model = hθ)

= arg min
θ
− log p(data = D | true model = hθ) − log p(true model = hθ)

We treat p(data = D) as a constant value because it does not depend on the variables we are
optimizing over. Notice that MAP is just like MLE, except we add a term p(true model = hθ) to
our objective. This term is the prior over our true model. Adding the prior has the effect of favoring
certain models over others a priori, regardless of the dataset. Note the MLE is a special case of
MAP, when the prior does not treat any model more favorably over other models. Concretely, we
have that

θ̂map = arg min
θ
−

( n∑
i=1

log[p(yi | xi, θ)]
)
− log[p(θ)]
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Again, just as in MLE, notice that we implicitly condition on the xi’s because we treat them as
constants. Also, let us assume as before that the noise terms are i.i.d. Gaussians: Ni

iid
∼ N(0, σ2).

For the prior term P(Θ), we assume that the components θ j are i.i.d. Gaussians:

θ j
iid
∼ N(θ j0 , σ

2
h)

Using this specific information, we now have:

θ̂map = arg min
θ

∑n
i=1(yi − hθ(xi))2

2σ2

 +


∑d

j=1(θ j − θ j0)
2

2σ2
h


= arg min

θ

 n∑
i=1

(yi − hθ(xi))2

 +
σ2

σ2
h

 d∑
j=1

(θ j − θ j0)
2


Let’s look again at the case for linear regression to illustrate the effect of the prior term when
θ j0 = 0. In this context, we refer to the linear hypothesis function hθ(x) = θ>x.

θ̂map = arg min
θ∈Rd

n∑
i=1

(yi − xi
>θ)2 +

σ2

σ2
h

d∑
j=1

θ2
j

This is just the Ridge Regression problem! We just proved that Ridge Regression and MAP for
regression lead to the same answer! We can simply set λ = σ2

σ2
h
. We conclude that MAP is a

probabilistic justification for adding the penalized ridge term in Ridge Regression.

1.4 MLE vs. MAP
Based on our analysis of Ordinary Least Squares Regression and Ridge Regression, we should
expect to see MAP perform better than MLE. But is that always the case? Let us visit a simple 2D
problem where

f (x) = slope · x + intercept

Suppose we already know the true underlying model parameters:

(slope∗, intercept∗) = (0.5, 1.0)

we would like to know what parameters MLE and MAP will select, after providing them with
some datasetD. Let’s start with MLE:
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The diagram above shows the the contours of the likelihood distribution in model space. The gray
dot represents the true underlying model. MLE chooses the point that maximizes the likelihood,
which is indicated by the green dot. As we can see, MLE chooses a reasonable hypothesis, but
this hypothesis lies in a region on high variance, which indicates a high level of uncertainty in the
predicted model. A slightly different dataset could significantly alter the predicted model.

Now, let’s take a look at the hypothesis model from MAP. One question that arises is where the
prior should be centered and what its variance should be. This depends on our belief of what the
true underlying model is. If we have reason to believe that the model weights should all be small,
then the prior should be centered at zero with a small variance. Let’s look at MAP for a prior that
is centered at zero:

For reference, we have marked the MLE estimation from before as the green point and the true
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model as the gray point. The prior distribution is indicated by the diagram on the left, and the pos-
terior distribution is indicated by the diagram on the right. MAP chooses the point that maximizes
the posterior probability, which is approximately (0.70, 0.25). Using a prior centered at zero leads
us to skew our prediction of the model weights toward the origin, leading to a less accurate hy-
pothesis than MLE. However, the posterior has significantly less variance, meaning that the point
that MAP chooses is less likely to overfit to the noise in the dataset.

Let’s say in our case that we have reason to believe that both model weights should be centered
around the 0.5 to 1 range.

Our prediction is now close to that of MLE, with the added benefit that there is significantly less
variance. However, if we believe the model weights should be centered around the -0.5 to -1 range,
we would make a much poorer prediction than MLE.

As always, in order to compare our beliefs to see which prior works best in practice, we should use
cross validation!
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