
CS 189 Introduction to Machine Learning
Spring 2018 Note 26

1 Boosting
We have seen that in the case of random forests, combining many imperfect models can produce a
single model that works very well. This is the idea of ensemble methods. However, random forests
treat each member of the forest equally, taking a plurality vote or an average over their outputs. The
idea of boosting is to combine the models (typically called weak learners in this context) in a more
principled manner. The key idea is as follows: to improve our combined model, we should focus
on finding learners that correctly predict the points which the overall boosted model is currently
predicting inaccurately. Boosting algorithms implement this idea by associating a weight with each
training point and iteratively reweighting so that mispredicted points have relatively high weights.
Intuitively, some points are “harder” to predict than others, so the algorithm should focus its efforts
on those.

These ideas also connect to matching pursuit. In both cases, our overall predictor is an additive
combination of pieces which are selected one-by-one in a greedy fashion. The algorithm keeps
track of residual prediction errors, chooses the “direction” to move based on these, and then per-
forms a sort of line search to determine how far along that direction to move.

1.1 AdaBoost
There are many flavors of boosting. We will discuss one of the most popular versions, known as
AdaBoost (short for adaptive boosting), which is a method for binary classification. Its developers
won the prestgious Gödel Prize for this work.

1.2 Algorithm
We present the algorithm first, then derive it later. Assume access to a dataset {(xi, yi)}ni=1, where
xi ∈ Rd and yi ∈ {−1, 1}.

1. Initialize the weights wi = 1
n

for all i = 1, . . . , n training points.

2. Repeat for m = 1, . . . ,M :

(a) Build a classifier Gm : Rd → {−1, 1}, where in the training process the data are
weighted according to wi.

(b) Compute the weighted error em =
∑

i misclassified wi∑
i wi

.

Note 26, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 1

(c) Re-weight the training points as

wi ← wi ·


√

1−em
em

if misclassified by Gm√
em

1−em otherwise

(d) Optional: normalize the weights wi to sum to 1.

We first address the issue of step (a): how do we train a classifier if we want to weight different
samples differently? One common way to do this is to resample from the original training set
every iteration to create a new training set that is fed to the next classifier. Specifically, we create
a training set of size n by sampling n values from the original training data with replacement,
according to the distribution wi. (This is why we might renormalize the weights in step (d).) This
way, data points with large values of wi are more likely to be included in this training set, and the
next classifier will place higher priority on such data points.

Suppose1 that our weak learners always produce an error em < 1
2
. To make sense of the formulas

we see in the algorithm, note that for step (c), if the i-th data point is misclassified, then the
weight wi gets increased by a factor of

√
1−em
em

(more priority placed on sample i), while if it is
classified correctly, the priority gets decreased. AdaBoost does have a practical weakness in that
this aggressive reweighting can cause the classifier to focus too much on certain training examples
– if the data contains outliers or a lot of noise, the boosting algorithm’s generalization performance
may suffer as it overfits to a few challenging examples.

We have not yet discussed how to make a prediction on test points given our classifiersG1, . . . , GM .
One conceivable method is to use logistic regression with Gm(x) as features. However, a smarter
choice that is based on the AdaBoost algorithm is to set

αm =
1

2
ln

(
1− em
em

)
and classify x by

h(x) = sgn

 M∑
m=1

αmGm(x)


Note that this choice of αm (derived later) gives high weight to classifiers that have low error:

• As em → 0, 1−em
em
→∞, so αm →∞.

• As em → 1, 1−em
em
→ 0, so αm → −∞.

We now proceed to demystify the formulas in the algorithm above by presenting a matching pursuit
interpretation of AdaBoost. This interpretation is also useful because it generalizes to a powerful
technique called Gradient Boosting, of which AdaBoost is just one instance.

1 This is a reasonable thing to ask. A classifier with error em ≥ 1
2

is even worse than the trivial classifier which predicts the
class with the most total weight without regard for the input xi.

Note 26, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 2

1.3 Derivation of AdaBoost
Suppose we have computed classifiers G1, . . . , Gm−1 along with their corresponding weights αk
and we want to compute the next classifier Gm along with its weight αm. The output of our model
so far is Fm−1(x) :=

∑m−1
i=1 αiGi(x), and we want to minimize the risk:

αm, Gm = argmin
α,G

n∑
i=1

L(yi, Fm−1(xi) + αG(xi))

for some suitable loss function L(y, ŷ). Loss functions we have previously used include mean
squared error for linear regression, cross-entropy loss for logistic regression, and hinge loss for
SVM. For AdaBoost, we use the exponential loss:

L(y, ŷ) = e−yŷ

This loss function is illustrated in Figure 1. Observe that if yŷ > 0 (i.e. ŷ has the correct sign), the
loss decreases exponentially in |ŷ|, which should be interpreted as the confidence of the prediction.
Conversely, if yŷ < 0, our loss is increasing exponentially in the confidence of the prediction.

Figure 1: The exponential loss provides exponentially increasing penalty for confident incorrect predictions.
This figure is from Cornell CS4780 notes.

Plugging the exponential loss into the general optimization problem above yields

αm, Gm = argmin
α,G

n∑
i=1

e−yi(Fm−1(xi)+αG(xi))

= argmin
α,G

n∑
i=1

e−yiFm−1(xi)e−yiαG(xi)

The term w
(m)
i := e−yiFm−1(xi) is a constant with respect to our optimization variables. We can

split out this sum into the components with correctly classified points and incorrectly classified
points:

αm, Gm = argmin
α,G

n∑
i=1

w
(m)
i e−yiαG(xi)

Note 26, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 3

= argmin
α,G

∑
yi=G(xi)

w
(m)
i e−α +

∑
yi 6=G(xi)

w
(m)
i eα (∗)

= argmin
α,G

e−α

 n∑
i=1

w
(m)
i −

∑
yi 6=G(xi)

w
(m)
i

+ eα
∑

yi 6=G(xi)

w
(m)
i

= argmin
α,G

(eα − e−α)
∑

yi 6=G(xi)

w
(m)
i + e−α

n∑
i=1

w
(m)
i

To arrive at (∗) we have used the fact that yiGm(xi) equals 1 if the prediction is correct, and −1
otherwise. For a fixed value of α, the second term in this last expression does not depend on G.
Thus we can see that the best choice of Gm(x) is the classifier that minimizes the total weight of
the misclassified points. Let

em =

∑
yi 6=Gm(xi)

w
(m)
i∑

iw
(m)
i

Once we have obtained Gm, we can solve for αm. Dividing (∗) by the constant
∑n

i=1w
(m)
i , we

obtain
αm = argmin

α
(1− em)e−α + eme

α

We can solve for the minimizer analytically using calculus. Setting the derivative of the objective
function to zero gives

0 = −(1− em)e−α + eme
α = −e−α + em(e

−α + eα)

Multiplying through by eα yields

0 = −1 + em(1 + e2α)

Adding one to both sides and dividing by em, we have

1

em
= 1 + e2α

i.e.
e2α =

1

em
− 1 =

1− em
em

Taking natural log on both sides and halving, we arrive at

αm =
1

2
ln

(
1− em
em

)
as claimed earlier. From the optimal αm, we can derive the weights:

w
(m+1)
i = exp

(
−yiFm(xi)

)
= exp

(
−yi[Fm−1(xi) + αmGm(xi)]

)
= w

(m)
i exp

(
−yiGm(xi)αm

)
Note 26, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 4

= w
(m)
i exp

(
−yiGm(xi)

1

2
ln

(
1− em
em

))

= w
(m)
i exp

ln

(1− em
em

)− 1
2
yiGm(xi)




= w
(m)
i

(
1− em
em

)− 1
2
yiGm(xi)

= w
(m)
i

√
em

1− em

yiGm(xi)

Here we see that the multiplicative factor is
√

em
1−em when yi = Gm(xi) and

√
1−em
em

otherwise.
This completes the derivation of the algorithm.

As a final note about the intuition, we can view these α updates as pushing towards a solution in
some direction until we can no longer improve our performance. More precisely, whenever we
compute αm (and thus w(m+1)), for the incorrectly classified entries, we have∑

yi 6=Gm(xi)

w
(m+1)
i =

∑
yi 6=Gm(xi)

w
(m)
i

√
1− em
em

Dividing the right-hand side by
∑n

i=1w
(m)
i , we obtain em

√
1−em
em

=
√
em(1− em). Similarly, for

the correctly classified entries, we have∑
yi=Gm(xi)

w
(m+1)
i∑n

i=1w
(m)
i

= (1− em)
√

em
1− em

=
√
em(1− em)

Thus these two quantities are the same once we have adjusted our α, so the misclassified and
correctly classified sets both get equal total weight.

This observation has an interesting practical implication. Even after the training error goes to zero,
the test error may continue to decrease. This may be counter-intuitive, as one would expect the
classifier to be overfitting to the training data at this point. One interpretation for this phenomenon
is that even though the boosted classifier has achieved perfect training error, it is still refining its fit
in a max-margin fashion, which increases its generalization capabilities.

1.4 Gradient Boosting
AdaBoost assumes a particular loss function, the exponential loss function. Gradient boosting is
a more general technique that allows an arbitrary differentiable loss function L(y, ŷ). Recall the
general optimization problem we must solve when choosing the next model:

min
α,G

n∑
i=1

L(yi, Fm−1(xi) + αG(xi))

Note 26, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Here G should no longer be assumed to be a classifier; it may be real-valued if we are solving a
regression problem. By a Taylor expansion in the second argument,

L(yi, Fm−1(xi) + αG(xi)) ≈ L(yi, Fm−1(xi)) +
∂L

∂ŷ
(yi, Fm−1(xi)) · αG(xi)

We can view the collection of predictions that a model G produces for the training set as a single
vector g ∈ Rn with components gi = G(xi). Then the overall cost function is approximated to
first order by

n∑
i=1

L(yi, Fm−1(xi)) + α
n∑
i=1

∂L

∂ŷ
(yi, Fm−1(xi)) · gi︸ ︷︷ ︸

〈∇ŷL(y,Fm−1(X)),g〉

where, in abuse of notation, Fm−1(X) is a vector with Fm−1(xi) as its ith element, and∇ŷL(y, ŷ)
is a vector with ∂L

∂ŷ
(yi, ŷi) as its ith element. To decrease the cost in a steepest descent fashion, we

seek the direction g which maximizes∣∣〈−∇ŷL(y, Fm−1(X)),g〉
∣∣

subject to g being the output of some model G in the model class we are considering.2

Some comments are in order. First, observe that the loss need only be differentiable with respect
to its inputs, not necessarily with respect to model parameters, so we can use non-differentiable
models such as decision trees. Additionally, in the case of squared loss L(y, ŷ) = 1

2
(y − ŷ)2 we

have
∂L

∂ŷ
(yi, Fm−1(xi)) = −(yi − Fm−1(xi))

so
−∇ŷL(y, Fm−1(X)) = y − Fm−1(X)

This means the algorithm will follow the residual, as in matching pursuit.

2 The absolute value may seem odd, but consider that after choosing the direction gm, we perform a line search to select αm.
This search may choose αm < 0, effectively flipping the direction. The key is to maximize the magnitude of the inner product.

Note 26, ©UCB CS 189, Spring 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 6

	Boosting
	AdaBoost
	Algorithm
	Derivation of AdaBoost
	Gradient Boosting

