EECS 189 Introduction to Machine Learning
Fall 2020 Note 19

| Generative VS. Discriminative Classiﬁcation

The task of classification differs from regression in that we are now interested in assigning a d-
dimensional data point one of a discrete number of classes, instead of assigning it a continuous
value. Thus, the task is simpler in that there are fewer choices of labels per data point but more
complicated in that we now need to somehow factor in information about each class to obtain the
classifier that we want.

Given a training set D = {(x;,y;)}{_, of n points, where each data point x; € R¢ is paired with a

known discrete class label y; € {1,2,..., K}, our goal is to train a classifier which, when fed any
arbitrary d-dimensional data point, classifies that data point as one of the K discrete classes.

There are two main types of classification models: generative models and discriminative models.
Generative models have strong roots in probabilistic modeling. The idea is that we form a joint
probability distribution p(X, ¥) over the input X (which we treat as a random vector) and label Y
(which we treat as a random variable), and we classify an arbitrary datapoint x with the class label
that maximizes the joint probability:

y =argmax p(x,Y = k)
k

Generative models typically form the joint distribution by explicitly forming the following:

e A prior probability distribution over all classes:

P(k) = P(class = k)

e A conditional probability distribution for each class k € {1, 2, ..., K}:

pi(X) = p(X|class k)

Using the prior and the conditional distributions in conjunction, we have (from Bayes’ rule) that
maximizing the joint probability over the class labels is equivalent to maximizing the posterior
probability of the class label:

y = argmax p(Xx,Y = k) = argmax P(k) pi(x) = argmax P(Y = k[x)
k k k

Maximizing the posterior will induce regions in the feature space in which one class has the highest
posterior probability, and decision boundaries in between classes where the posterior probability
of two classes are equal.

Note 15, ©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 1

Figure 1: A collection (in dark black) of linear (left) vs quadratic (right) level set boundaries in a 2D feature
space

Generative classifiers are flexible, quick to train, and can generate new samples (in order to aug-
ment the training dataset). However, they are also inefficient, because they require estimation of
a large number of parameters (ie. the covariance matrices of the conditional distributions, which
have @ parameters). Typically, the decision boundary only requires O(d) parameters, but gen-
erative models typically estimate O(d?) parameters in order to to determine the class-conditional
probability distributions. As d increases, generative models tend to loose their effectiveness, as the
number of parameters starts to dominate in comparison to the number of datapoints, and as a result

the variance of the model increases.

This leads us to the concept of discriminative models, where we bypass learning a generative
model altogether and directly learn a decision boundary. Discriminative models are parameterized
by weights that either (1) form a posterior distribution P(Y|X) without considering the prior or
conditional distributions, or (2) directly form a hard decision boundary without considering any
probabilities in the first place. In the former case, discriminative models choose the class that
maximizes the posterior probability distribution:

y =argmax P(Y = k|x)
k

Generative models also choose the class that maximizes the posterior probability distribution. The
only difference is in the way generative and discriminative models form the posterior.

1.1 Bayes, Decision Rule

While both generative and discriminative models by default maximize the posterior probability
over classes, this strategy may not necessarily be desirable at all times. Rather than maximizing
the posterior probability, we would really like to minimize the risk of our model. Recall that the
risk for a given classifier 4 is defined as the expected loss over X and Y:

R(h) = Exy)~plt(h(x), y)]

where €((h(x),y) measures the loss between the predicted label A(x) and the true label y. In the
context of regression, the loss function was the squared error £(h(x),y) = (h(x) — y)>. In the

Note 15, ©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 2

context of classification, the loss function can take many forms, but the simplest is the standard
step function
0 ifhx)=y

R PRy PR

Our goal 1s to find a classifier that minimizes the risk, given the loss function. We can equivalently
express the risk as

K
R(h) = f D LX), OP(Y = kix) | p(x)dx
k=1

The Bayes’ classifier #* will minimize the risk. Given an arbitrary x, the Bayes’ classifier will
pick
K
h*(X) = arg min Z L(j, k)P(Y = k|x)
J k=1
Effectively, the Bayes’ classifier will pick the class that minimizes the expected loss for the given
x. In the special case where the loss function is the standard step function (as described above),

h*(x) = arg min Z P(Y = k|x) = argmin 1 — P(Y = j|x) = argmax P(Y = j|x)
j J J

7 k#j
This is equivalent to selecting the class that maximizes the posterior distribution!

Depending on which loss function we are using, the optimal classifier may or may not maximize
the posterior probability. For example, consider the case of cancer diagnosis, where a patient’s
diagnosis for cancer can come up as positive or negative. There are four possible cases:

1. Classify the patient cancer +, and in reality the patient is cancer + (Correct Classification)
2. Classify the patient cancer —, and in reality the patient is cancer — (Correct Classification)
3. Classify the patient cancer +, but in reality the patient is cancer — (False positive)

4. Classify the patient cancer —, but in reality the patient is cancer + (False negative)

Classifying the patient’s condition correctly is ideal, so we can reasonably set the loss for those
cases to 0. The false positive and false negative cases are bad, and there should be a loss for these
cases. But should these cases have the same loss value or should we weigh them differently? A
false negative diagnosis would be significantly worse than a false positive, because a false negative
diagnosis would go undiagnosed and would probably be fatal. Therefore, the associated loss for
the false negative case should be higher than the associated loss for the false positive case. In this
case, the goal is no longer to maximize the posterior probability, because otherwise we would be
treating the false negative and false positive cases the same.

Note 15, ©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 3

2 Least Squares Support Vector Machine

As a first example of a simple, non-probabilistic discriminative model, we discuss the Least
Squares Support Vector Machine (LLS-SVM). Consider the binary classification problem where
the classes are represented by —1 and +1. One way to classify a data point X is to estimate param-
eters w, compute W'X, and classify x to be sign(w'x). Geometrically, the decision boundary this
produces is a hyperplane, w'x = 0.

We need to figure out how to optimize the parameter w. One simple procedure we can try is to fit
a least squares objective:

arg min Z lly: — sign(w'x)|* + A|wl|>
i=1

w

Where x;,w € R, Note that we have not forgotten about the bias term! Even though we are
dealing with d dimensional data, x; and w are d + 1 dimensional: we add an extra “feature” of 1
to x, and a corresponding bias term of k in w. Note that in practice, we do not want to penalize
the bias term in the regularization term, because the we should be able to work with any affine
transformation of the data and still end up with the same decision boundary. Therefore, rather
than taking the norm of w, we often take the norm of w’, which is every term of w excluding the
corresponding bias term. For simplicity of notation however, let’s just take the norm of w.

Without the regularization term, this would be equivalent to minimizing the number of misclassi-
fied training points. Unfortunately, the “sign” term makes this optimization problem non-convex,
and in fact this optimization problem is NP-hard (computationally intractable). Instead we can
solve a relaxed version of this problem:

n

. 2 2

arg min E llyi = Wil + Allwl|
i1

w
This method is called the binary least squares support vector machine (LS-SVM). Note that in
this relaxed version, we care about the magnitude of w'x; and not just the sign.

One drawback of LS-SVM is that the hyperplane decision boundary it computes does not neces-
sarily make sense for the sake of classification. For example, consider the following set of data
points, color-coded according to the class:

Note 15, ©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 4

154
1.0+

0.5 1

00{ ~—

e,
i hd“'6 z
-1.0 ®
LR Pl XL
~1.5 1 ®
L R S S—

Figure 2: Reasonable fit LS-SVM

LS-SVM will classify every data point correctly, since all the +1 points lie on one side of the
decision boundary and all the —1 points lie on the other side. Now if we add another cluster of
points as follows:

—4

Figure 3: Poor fit LS-SVM

The original LS-SVM fit would still have classified every point correctly, but now the LS-SVM
gets confused and decides that the points at the bottom right are contributing too much to the
loss (perhaps for these points, w'x; = —5 for the original choice of w so even though they are on
the correct side of the original separating hyperplane, they incur a high squared loss and thus the
hyperplane is shifted to accommodate). This problem will be solved when we introduce general
Support Vector Machines (SVM’s).

Note 15, ©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 5

2.1 Feature Extension

Working with linear classifiers in the raw feature space may be extremely limiting, so we may
consider adding features that that allow us to come up with nonlinear classifiers (note that we
are still working with linear classifiers in the augmented feature space). For example, adding
quadratic features allows us to find a linear decision boundary in the augmented quadratic space
that corresponds to a nonlinear “circle” decision boundary projected down into the raw feature
space.

Figure 4: Augmenting Features, image courtesy of Prof. Shewchuk

In order implement this idea, we re-express our objective as

argmin) [ly; = WG| + AlwlP
i=1

w

Note that ¢ is a function that takes as input the data in raw feature space, and outputs the data in
augmented feature space.

2.2 Neural Network Extension

Instead of using the linear function w'x or augmenting features to the data, we can also directly
use a non-linear function of our choice in the original feature space, such as a neural network. One
can imagine a whole family of discriminative binary classifiers that minimize

llyi = gw I + Alwl?
1

n
arg min
w =

1

where gw(X;) can be any function that is easy to optimize. Then we can classify using the rule

1 gw(Xi) > 6
-1 gw(Xi) <6

A

i

Where 6 is some threshold. In LS-SVM, gw(x;) = x'w; and 6 = 0. Using a neural network with
non-linearities as gy, can produce complex, non-linear decision boundaries.

Note 15, ©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 6

https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf

2.3 Multiclass Extension

We can also adapt this approach to the case where we have multiple classes. Suppose there are K
classes, labeled 1,2, ..., K. One possible way to extend the approach from binary classification is
to compute gw(X;) and round it to the nearest number from 1 to K. However, this approach gives an
“ordering” to the classes, even if the classes themselves have no natural ordering. This is clearly a
problem. For example, in fruit classification, suppose 1 is used to represent “peach,” 2 is used to
represent “banana,” and 3 is used to represent “apple.” In our numerical representation, it would
appear that peaches are less than bananas, which are less than apples. As a result, if we have an
image that looks like some cross between an apple and a peach, we may simply end up classifying
it as a banana.

The typical way to get around this issue is as follows: if the i’th observation has class k, instead
of using the representation y; = k, we can use the representation y; = e, the k’th canonical basis
vector. Now there is no relative ordering in the representations of the classes. This method is called
one-hot vector encoding.

When we have multiple classes, each y; is a K-dimensional one-hot vector, so for LS-SVM, we
instead have a K X (d + 1) weight matrix to optimize over:

n
. 2 2
arg min Z ly; — Wxil[” + AlIwl|
w -
i=1

To classify an arbitrary input x, we compute Wx and see which component k is the largest:

$ = max w;'x
k

Note 15, ©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 7

	Generative vs. Discriminative Classification
	Bayes' Decision Rule

	Least Squares Support Vector Machine
	Feature Extension
	Neural Network Extension
	Multiclass Extension

