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1 Gradient Descent Extensions
Recall gradient descent, an iterative first-order method that takes small steps opposite the direction
of the gradient:

Algorithm 1: Gradient Descent

Initialize w(0) to a random point
while f(w(t)) not converged do

w(t+1) ← w(t) − αt∇f(w(t))

The standard gradient descent algorithm works fine in practice, but it can be significantly improved
with some minor modifications. We now present some extensions that can greatly help with con-
vergence and computational efficiency.

1.1 Gradient Descent with Momentum
Moving in the direction of steepest descent is a greedy approach — it uses information only about
the current iterate without considering information about previous iterates or potential future it-
erates. This can often lead to oscillations that cause instability and slow convergence. These
issues particularity arise when the objective function is disproportionately scaled — ie. the func-
tion is elongated along one axis while being contracted along along another, giving the illusion of
“ravines” in the function landscape. The disproportionate scalings cause the algorithm to make
large leaps in contracted directions, while making very slow progress along elongated directions.
The resulting behavior is a series of oscillations that may reach the optimal point slowly or never
reach it at all.

Figure 1: Standard gradient descent cannot converge to the optimum when the objective function is dispro-
portionately scaled. Source: distill.pub
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Polyak’s heavy ball method addresses these issues by introducing a momentum term that adds
inertia to the iterates and prevents them from deviating from the overall direction of the updates.
Rather than updating the iterate w(t) using the gradient ∇f(w(t)), Polyak’s heavy ball method
uses∇f(w(t)) along with a history of all the gradients from the iterates seen so far. Specifically, it
updates the iterates via a velocity term v(t) that represents an exponential moving average of all of
the gradients seen so far.

Algorithm 2: Polyak’s Heavy Ball Method

Initialize w(0) to a random point
Initialize v(0) to −α0∇f(w(0))
while f(w(t)) not converged do

v(t) ← βtv
(t−1) − αt∇f(w(t))

w(t+1) ← w(t) + v(t)

The velocity term is updated in the following recursive fashion:

v(t) ← βtv
(t−1) − αt∇f(w(t))

which when unrolled, is equivalent to

v(t) ←− βt · βt−1 . . . β1α0∇f(w(0))

− βt · βt−1 . . . β2α1∇f(w(1))

. . .

− αt∇f(w(t))

which in the case when the β’s and α’s are constant is equivalent to

v(t) ← −βtα∇f(w(0))− βt−1α∇f(w(1))− . . .− α∇f(w(t))

The motivation for using a moving average of the gradients is as follows: we want to downplay
the directions for which the gradient is oscillating over time and boost the directions for which
the gradient is constant over time. When we are in a “ravine” this has the effect of “killing” the
gradient in constricted directions whose derivatives oscillate over time, accelerating convergence.

Figure 2: Polyak’s heavy ball method uses momentum to dampen oscillations, accelerating convergence to
the optimum point. Source: distill.pub
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There is an alternative interpretation of Polyak’s heavy ball method that is condensed to just one
line:

w(t+1) ← w(t) − αt∇f(w(t)) + βt(w
(t) −w(t−1))

We can establish equivalence through the following manipulations:

w(t+1) = w(t) + v(t)

= w(t) + βtv
(t−1) − αt∇f(w(t))

= w(t) − αt∇f(w(t)) + βtv
(t−1)

= w(t) − αt∇f(w(t)) + βt(w
(t) −w(t−1))

Polyak’s heavy ball method uses information about past iterates to determine the descent direction.
Nesterov’s accelerated gradient descent improves on this reasoning, incorporating information
about potential future iterates as well. The only difference in Nesterov’s accelerated gradient de-
scent is that it computes a “lookahead gradient”∇f(w(t) + βtv

(t−1)) instead of the gradient at the
current iterate ∇f(w(t)). Effectively, we are performing a one step “look ahead” of the gradient
and moving in that direction, potentially correcting for oscillations ahead of us.

Algorithm 3: Nesterov’s Accelerated Gradient Descent

Initialize w(0) to a random point
Initialize v(0) to −α0∇f(w(0))
while f(w(t)) not converged do

v(t) ← βtv
(t−1) − αt∇f(w(t) + βtv

(t−1))
w(t+1) ← w(t) + v(t)

Figure 3: Polyak’s heavy ball method applies gradient before update, while Nesterov’s accelerated gradient
descent applies gradient after update. Source: Stanford CS 231n

Through the same manipulations that we showed for Polyak’s heavy ball method, we derive the
one-line update for Nesterov’s accelerated gradient descent:

w(t+1) ← w(t) − αt∇f(w(t) + β(w(t) −w(t−1))) + βt(w
(t) −w(t−1))
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1.2 Stochastic Gradient Descent
In the standard gradient decent update, computing the gradient ∇f(w(t)) can be an expensive
operation. Imagine an objective function of the form

f(w) =
1

n

n∑
i=1

fi(w)

where n � d. Computing the gradient effectively entails computing and adding n separate gradi-
ents, which is very costly:

∇f(w) =
1

n

n∑
i=1

∇fi(w)

Stochastic gradient descent aims to resolve this issue by replacing the gradient with a noisy
stochastic gradientG(w) that is significantly more efficient to compute. Specifically, the stochas-
tic gradient is a random vector that is an unbiased estimate of the true gradient:

E[G(w)] = ∇f(w)

The stochastic gradient is used in place of the true gradient in the update rule:

w(t+1) ← w(t) − αt∇G(w(t))

Stochastic gradient descent is mainly used when the objective is a sum of decomposable, inde-
pendent and identically distributed (i.i.d) losses f(w) = 1

n

∑n
i=1 fi(w). This naturally entails the

stochastic gradient
G(w) = ∇fi(w)

by just drawing an index i uniformly at random from {1, . . . , n}. Since the losses are i.i.d, we have
that

E[G(w)] = E[∇fi(w)] = ∇E[fi(w)] = ∇f(w)

Algorithm 4: Stochastic Gradient Descent

Initialize w(0) to a random point
while f(w(t)) not converged do

Sample a random index it
w(t+1) ← w(t) − αt∇fit(w(t))

Now, we just have to perform one gradient computation in each update step rather than n separate
gradient computations, leading each iteration to become significantly faster. However, since our
stochastic gradients comprise of just a single sample, they may have very large variance, caus-
ing the performance of the algorithm to oscillate quite frequently and requiring us to perform a
significantly higher number of iterations.
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Figure 4: Increasing the batch size will lead to more stability at the cost of higher computational costs.
Source: Towards Data Science
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