
EECS 189 Introduction to Machine Learning
Fall 2020 Note 12

1 Nonlinear Least Squares
Up to this point, we’ve restricted ourselves to linear regression models. That is, our prediction
ŷ = w>x is a linear function of the input x. This holds even in the case of least-squares polynomial
regression — while the predicted value is not a linear function of the raw input x, it is still a linear
function of the augmented polynomial feature input φ(x).

Effectively, we have been able to form nonlinear models by manually augmenting features to the
input. Now what if instead of using a linear function of the augmented input, we could use an
arbitrary nonlinear function f (x; w) directly of the raw input x? This approach is often more
expressive and robust, because it removes the burden of augmenting expressive features to the
input. As a motivating example, consider the problem of estimating the 2D position w = (w1,w2)
of a robot. We are given noisy distance estimates Yi ∈ R from n sensors whose positions xi ∈ R

2

are fixed and known. Since we are predicting distance, it is reasonable to use the model f (x; w) =

‖x − w‖2. This model is clearly more appropriate than restricting ourselves to a linear model with
augmented features — in that case, what exactly would the augmented features be?

Note however that for most problems, we are not given the form or structure of the model. Consider
the following example: we are trying to predict a user’s income based on their occupation, age,
education, etc... It is not exactly clear what model we should use. Rather than specifying a specific
family of nonlinear functions, we are instead interested in a universal function appropriator f (x; w)
which can approximate any function f (x) with appropriate parameters w. This will be the basis for
neural networks, which we will study in detail later.

For the purposes of our discussion, let us assume that we are given a model f , an arbitrary (non-
linear) differentiable function parameterized by w:

Yi = f (xi; w) + Zi, Zi
iid
∼ N(0, σ2), i = 1, . . . , n

which can equivalently be expressed as Yi | xi ∼ N(f (xi; w), σ2). We are interested in finding the
parameters ŵmle that maximize the likelihood of the data:

ŵmle = arg max
w

`(w; X, y)

= arg max
w

n∑
i=1

log p(yi | xi,w)

= arg max
w

n∑
i=1

log
1

√
2πσ2

exp
− (yi − f (xi; w))2

2σ2


= arg max

w

n∑
i=1

[
−

1
2

log
(
2πσ2

)
−

1
2σ2 (yi − f (xi; w))2

]

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 1

= arg min
w

n∑
i=1

(yi − f (xi; w))2

Observe that the objective function is a sum of squared residuals as we’ve seen before, but now the
function f is nonlinear. For this reason this method is called nonlinear least squares.

Motivated by the MLE formulation above, our goal is to solve the following optimization problem:

min
w

L(w) = min
w

1
2

n∑
i=1

(yi − f (xi; w))2

One way to solve this optimization problem is to find all of its critical points and choose the point
that minimizes the objective. From first-order optimality conditions, the gradient of the objective
function at any minimum must be zero:

∇wL(w) =

n∑
i=1

(yi − f (xi; w))∇w f (xi; w) = 0

In compact matrix notation:
∇wL(w) = J(w)>(y − F(w)) = 0

where

F(w) =


f (x1; w)

...

f (xn; w)

 , J(w) =


∇w f (x1; w)>

...

∇w f (xn; w)>


J is also referred to as the Jacobian of F. Observe that in the special case when f is linear in w (i.e.
f (xi; w) = w>xi), the gradient ∇wL(w) will only depend w in F(w) because the term ∇w f (xi; w)
will only depend on xi:

∇wL(w) =

n∑
i=1

(yi − w>xi)∇w(w>xi) =

n∑
i=1

(yi − w>xi)xi = X>(y − Xw)

and we can derive a closed-form solution for w, arriving at the OLS solution:

X>(y − Xw) = 0
X>y − X>Xw = 0

X>y = X>Xw
w = (X>X)−1X>y

In the general case where f is nonlinear in w, it is not necessarily possible to derive a closed-
form solution for w, for a few reasons. First of all, without additional assumptions on f , the
NLS objective may not be convex. Therefore there may exist values of w that are not global
minima, but nonetheless ∇wL(w) = 0 — they could be local minima, saddle points, or worse, local
maxima! Second of all, even if the objective is convex, we may not be able to solve the equation
J(w)>(y−F(w)) = 0 for w. Given the challenges that nonlinear least squares introduces over linear
least squares, we need a principled approach to solve problems that have no closed-form solution,
preferably agnostic of the specific objective itself.

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 2

2 Optimization
In the specific case of nonlinear least squares the objective is

min
w

1
2

n∑
i=1

(yi − f (xi; w))2

but more generally, as we move into the realm of neural networks and beyond, we will be solving
arbitrary problems of the form

min
w∈X

f (w)

over an arbitrary continuous objective function f : Rd → R and arbitrary domain X. If we are able
to solve this more general class of problems, then we can solve nonlinear least squares as a specific
instance of the problem. Solving such problems is the focus of optimization, an extensive field
that has applications in control theory, finance, and machine learning.

In optimization we are interested in finding the global minimum of a function. In the pursuit of
finding the global minimum, we may encounter local minima along the way, which are suboptimal
but may actually be close enough to the global minimum. More broadly, such points belong to the
class of critical points, the “interesting” points of deflection that we may want to consider when
finding minima:

(i) local minimum: a differentiable point w ∈ X such that there exists a neighborhood around
w where f (w) attains the minimum value

(ii) local maximum: a differentiable point w ∈ X such that there exists a neighborhood around
w where f (w) attains the maximum value

(iii) saddle point: a differentiable point w ∈ X such that for all neighborhoods around w, there
exists u, v such that f (u) ≤ f (w) ≤ f (v)

Figure 1: Source: Off the Convex Path

Technically, local minima must exist within a neighborhood of the domain and be differentiable,
and our analysis of minima isn’t complete without also considering the following as potential
minima:

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 3

https://www.offconvex.org/2016/03/22/saddlepoints/

(i) boundary points: points w ∈ X that can be approached from both X and outside X, or more
intuitively, points that lie of the “boundary” of X

(ii) non-differentiable points: points at which the derivative is undefined, such as points with
“kinks”

For the remainder of our discussion, we will assume that we are solving unconstrained optimization
problems with differentiable functions, so that we will only have to consider critical points in our
analysis.

The categorization in the previous section is helpful, but how exactly can we determine which
points in the domain are critical points? As it turns out, the set of all critical points is simply the
set of points at which the gradient is zero. Given that f is continuously differentiable, the gradient
is defined as the vector of partial derivatives of f , denoted by

∇ f =


∂ f
∂w1
∂ f
∂w2
...
∂ f
∂wd


Since the set of points for which the gradient is zero in turn define the set of critical points, the
gradient being zero is a necessary condition for local minima.

Proposition 1. If w∗ is a local minimum of f and f is continuously differentiable in a neighborhood
of w∗, then ∇ f (w∗) = 0.

Proof. See math4ml. �

This justifies the technique we have been using on numerous occasions so far to solve least squares
problems: setting the gradient of the objective function to zero and solving the corresponding
equation. Note however, that while setting the gradient to zero is a necessary condition for local
minima, it is not a sufficient condition. In many circumstances, the function that we are optimizing
may not have a local minima, and generally setting the gradient to zero could yield local maxima
or saddle points. Even if all critical points were minima, we would still have to solve the corre-
sponding equation ∇ f (w) = 0, which is not always trivial. In the cases when solving this equation
is intractable, we say that no closed-form solution exists, and therefore an iterative algorithm is
needed to solve the optimization problem. Even if a problem does have a closed form solution that
we can directly find, it may still be much more computationally efficient to solve the problem with
iterative algorithms.

3 Gradient Descent
Rather than using gradients to find the closed-form solution, we can use gradients to “creep toward”
a local minimum in an iterative fashion. Gradient Descent is an algorithm that iteratively takes

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 4

http://gwthomas.github.io/docs/math4ml.pdf

small steps in the direction of steepest descent of the objective f . Intuitively, we can view gradient
descent as a ball rolling down a hill. If we place the ball somewhere at the top of the hill, it will
naturally roll down the direction of steepest descent until it reaches the bottom of the hill, at which
point it may oscillate around until it eventually comes to a stop at the bottom.

Gradient descent is a simple, intuitive method that works remarkably well in practice. One question
that remains is: how exactly do we determine the direction of steepest descent of a multivariate
function, and what does this method have to do with gradients? Given that we are currently at
a point w(t) in the domain of the function, the direction of steepest descent is the negative of the
gradient at that point, −∇ f (w(t)). To see why, recall that the directional derivative in a unit direction
u at w(t) is defined as the inner product of the gradient and the direction:

Du f (w(t)) = ∠∇ f (w(t)),u = ‖∇ f (w(t))‖ · ‖u‖ · cos(θ)

where θ is the angle between ∇ f (w(t)) and u. Finding the direction of steepest descent entails
finding the direction that minimizes the directional derivative. We can minimize the directional
derivative by setting θ = −π, which will mean that the direction u and ∇ f (w(t)) are opposite to each
other, and thus the direction of steepest descent u∗ is −∇ f (w(t)) (similarly the direction of steepest
ascent is ∇ f (w(t))). The gradient descent algorithm will take an arbitrary step in this direction,
scaling the gradient by a scalar αt.

vlined 1 Gradient Descent
Initialize w(0) to a random point

while f (w(t)) not converged do w(t+1) ← w(t) − αt∇ f (w(t))

Determining this scaling αt is dependent on the attributes of the function f . Sometimes we can
set the scaling to a constant value and converge to the optimum value, whereas in other instances
we need to determine an adaptive stepsize. A scaling that is too high may cause the algorithm to
diverge from the optimal solution, whereas a scaling that is too low may cause the algorithm to
converge too slowly. For certain classes of functions, there are theoretical guarantees that establish
convergence, which we will state later.

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Figure 2: In gradient descent, stepsize matters. A small stepsize (left) will never converge to the optimal
point, and a large stepsize (right) will lead to divergence. Source: CMU 10-725

3.1 Stochastic Gradient Descent
In many machine learning applications, the loss f that we want to minimize can be decomposed
into a sum of functions, that is f (w) = 1

n

∑n
i=1 fi(w). This holds in particular for problems involv-

ing an average over the training data, which is for example the case when we want to find the
maximum likelihood estimator given i.i.d. data in a generative probabilistic model. In the stan-
dard gradient descent update, computing the gradient effectively entails computing and adding n
separate gradients:

∇ f (w) =
1
n

n∑
i=1

∇ fi(w)

This standard form of gradient descent is commonly referred to as batch gradient descent, be-
cause it computes a full “batch” of gradients in each update. Assuming that the objective function
f is deterministic, and given a fixed initial iterate w(0), batch gradient descent is a deterministic
algorithm.

One major issue with batch gradient descent is that it can be computationally expensive, because
it requires computing and adding n separate gradients. In addition, due to the deterministic na-
ture of the algorithm, it can easily get stuck at local minima and saddle points. We can mit-
igate these issues by deploying stochastic gradients. Given a fixed w, the stochastic gradient
G(w) is a random vector-valued function which is equal to the gradient ∇ f (w) in expectation, i.e.
EG[G(w)] = ∇ f (w), where the expectation is over the stochasticity of the gradient. We can there-
fore say that the stochastic gradient is an unbiased estimate of the true gradient. The stochastic
gradient is used in place of the true gradient in the update rule:

w(t+1) ← w(t) − αt∇G(w(t))

Mini-batch gradient descent is a stochastic variant of batch gradient descent, that instead of
summing an entire “batch” of n gradients, samples and adds a random “mini-batch” of gradients

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 6

https://www.cs.cmu.edu/~ggordon/10725-F12/slides/05-gd-revisited.pdf

over k < n indices drawn from {1, . . . , n}:

G(w) =
1
k

k∑
i=1

∇ fi(w)

A major advantage of mini-batch gradient descent is that each iteration is now more computa-
tionally efficient, leading to greater progress and allowing us to monitor the performance of the
algorithm faster. In addition, mini-batch gradient descent can escape local minima with more ease
compared to batch gradient descent, due the noisy nature of its gradients. However note that this
can also lead to instability if the stochastic gradients have high variance. For this reason, mini-batch
gradient descent generally requires a higher number of overall iterations to match the performance
of batch gradient descent, which can lead to expensive computational overhead. Given the appro-
priate choice of k, mini-batch gradient descent can be significantly more computationally efficient
overall than batch gradient descent.

The special case of mini-batch gradient descent with k = 1 is called stochastic gradient descent
(SGD). In this case, we can define the stochastic gradient by just drawing an index i uniformly at
random from {1, . . . , n} and setting

G(w) = ∇ fi(w)

We can verify that the stochastic gradient is indeed an unbiased estimate of the true gradient:

Ei[G(w)] = Ei[∇ fi(w)] =

n∑
j=1

P(i = j)∇ f j(w)

=
1
n

n∑
j=1

∇ f j(w) = ∇ f (w)

vlined 2 Stochastic Gradient Descent
Initialize w(0) to a random point

while f (w(t)) not converged do Sample a random index it from {1, . . . , n}
w(t+1) ← w(t) − αt∇ fit (w(t))

Compared to batch gradient descent, the gradient updates in SGD are significantly faster, but SGD
often requires a significantly higher number of updates. In practice, mini-batch gradient descent
is more effective than SGD and batch gradient descent, capturing the stability of batch gradient
descent while at the same time injecting enough stochasticity to escape local minima and saddle
points.

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 7

Figure 3: Increasing the batch size will lead to more stability at the cost of higher computational costs.
Source: Towards Data Science

A fair metric that we can use to compare batch, mini-batch, and stochastic gradient descent is
through the concept of epochs. An epoch is a measure of time — it is defined as the number of
iterations in order to traverse the training data once. In the case of batch gradient descent, since
all n examples comprising the training data are used to compute the gradient at each iteration, an
epoch is simply equivalent to one iteration. In the case of SGD, since we only sample one example
at each iteration, an epoch is equivalent to n iterations. In the case of mini-batch gradient descent,
as epoch comprises of n

k iterations. In practice, given the same number of epochs, mini-batch
gradient descent tends to perform the best.

3.2 Momentum
Just as mini-batch gradient descent can lead us to escape local minima and saddle points, the
stochastic nature of the algorithm can often lead to oscillations that cause instability and slow
convergence. These issues are not just unique to stochastic gradients and can arise in the de-
terministic case, for example when the objective function is disproportionately scaled — ie. the
function is elongated along one axis while being contracted along along another, giving the illusion
of “ravines” in the function landscape. The disproportionate scalings cause the algorithm to make
large leaps in contracted directions, while making very slow progress along elongated directions.
The resulting behavior is a series of oscillations that may reach the optimal point very slowly.

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 8

https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

Figure 4: Standard gradient descent cannot converge to the optimum when the objective function is dispro-
portionately scaled. Source: distill.pub

Polyak’s heavy ball method addresses these issues by introducing a momentum term that adds
inertia to the iterates and prevents them from deviating from the overall direction of the updates.
Rather than updating the iterate w(t) using the gradient ∇ f (w(t)), Polyak’s heavy ball method uses
∇ f (w(t)) along with a history of all the gradients from the iterates seen so far. Specifically, it
updates the iterates via a velocity term v(t) that represents an exponential moving average of all of
the gradients seen so far.

vlined 3 Polyak’s Heavy Ball Method
Initialize w(0) to a random point
Initialize v(0) to −α0∇ f (w(0))

while f (w(t)) not converged do v(t) ← βtv(t−1) − αt∇ f (w(t))
w(t+1) ← w(t) + v(t)

The velocity term is updated in the following recursive fashion:

v(t) ← βtv(t−1) − αt∇ f (w(t))

which when unrolled, is equivalent to

v(t) ←− βt · βt−1 . . . β1α0∇ f (w(0))
− βt · βt−1 . . . β2α1∇ f (w(1))
. . .

− αt∇ f (w(t))

which in the case when the β’s and α’s are constant is equivalent to

v(t) ← −βtα∇ f (w(0)) − βt−1α∇ f (w(1)) − . . . − α∇ f (w(t))

The motivation for using a moving average of the gradients is as follows: we want to downplay
the directions for which the gradient is oscillating over time and boost the directions for which

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 9

https://distill.pub/2017/momentum/

the gradient is constant over time. When we are in a “ravine” this has the effect of “killing” the
gradient in constricted directions whose derivatives oscillate over time, accelerating convergence.

Figure 5: Polyak’s heavy ball method uses momentum to dampen oscillations, accelerating convergence to
the optimum point. Source: distill.pub

There is an alternative interpretation of Polyak’s heavy ball method that is condensed to just one
line:

w(t+1) ← w(t) − αt∇ f (w(t)) + βt(w(t) − w(t−1))

We can establish equivalence through the following manipulations:

w(t+1) = w(t) + v(t)

= w(t) + (−αt∇ f (w(t)) + βtv(t−1))
= w(t) − αt∇ f (w(t)) + βt(w(t) − w(t−1))

Polyak’s heavy ball method uses information about past iterates to determine the descent direction.
Nesterov’s accelerated gradient descent improves on this reasoning, incorporating information
about potential future iterates as well. The only difference in Nesterov’s accelerated gradient de-
scent is that it computes a “lookahead gradient” ∇ f (w(t) + βtv(t−1)) instead of the gradient at the
current iterate ∇ f (w(t)). Effectively, we are performing a one step “look ahead” of the gradient and
moving in that direction, potentially correcting for oscillations ahead of us.

vlined 4 Nesterov’s Accelerated Gradient Descent
Initialize w(0) to a random point
Initialize v(0) to −α0∇ f (w(0))

while f (w(t)) not converged do v(t) ← βtv(t−1) − αt∇ f (w(t) + βtv(t−1))
w(t+1) ← w(t) + v(t)

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 10

https://distill.pub/2017/momentum/

Figure 6: Polyak’s heavy ball method applies gradient before update, while Nesterov’s accelerated gradient
descent applies gradient after update. Source: Stanford CS 231n

Through the same manipulations that we showed for Polyak’s heavy ball method, we derive the
one-line update for Nesterov’s accelerated gradient descent:

w(t+1) ← w(t) − αt∇ f (w(t) + β(w(t) − w(t−1))) + βt(w(t) − w(t−1))

4 Line Search
Line search is another iterative optimization algorithm that, instead of taking small gradient steps,
repeatedly slices the function across a 1 dimensional line and finds the minimum. Normally, find-
ing the (global) minimum of d functions is an extremely difficult problem, but in this case we are
only doing so for 1 dimensional “sliced” functions, which is a much more trivial task. Each itera-
tion of line search entails three steps: (1) choosing a promising descent direction (or sometimes a
random direction), (2) looking ahead in that direction and (roughly) finding the minimum, and (3)
going to that minimum.

vlined 5 Line Search
Initialize w(0) to a random point

while f (w(t)) not converged do Find a descent direction u(t)

Find αt ∈ R+ to minimize h(α) = f (w(t) + αu(t))
w(t+1) ← w(t) − αtu(t)

There are several options for the direction, such as the negative gradient (which is used in gradient
descent). Broadly, we can pick any descent direction — a direction which entails to a negative
directional derivate:

Du f (w(t)) = ∠∇ f (w(t)),u < 0

Another common choice is to choose an arbitrary coordinate (for example, the x/y/z coordinate
in 3D), a line search variant called coordinate descent. Note that the minimization in the second
step does not necessarily need to be exact. A simple approach is to sample several points across
the line and choose the minimum, in a grid search fashion.

Line search methods offer a few advantages over gradient descent methods. For one, they do
not necessarily require gradients, which can be particularly helpful in non-differentiable domains.

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 11

http://cs231n.github.io/neural-networks-3

Also, they are potentially more robust to local minima, because they find the global minima of the
1D functions ahead of them.

5 Convex Optimization
A critical issue with the methods we have presented so far is that they can get stuck in local minima.
With gradient descent for example, moving in the direction of steepest descent is a greedy choice
that can cause convergence to a poor local minimum, depending on the initial starting point of the
algorithm.

Figure 7: Depending on the initialization of gradient descent, the algorithm will converge to different local
minima. Source: Towards Data Science

Convex functions conveniently eliminate this problem due to their “bowl shape,” which ensures
that all local minima are global minima.

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5
2.0

1

2

3

4

5

6

7

8

Figure 8: Source: Wikipedia

Due to this property, optimizing convex functions entails nice theoretical convergence rates that are
otherwise not guaranteed for non-convex functions. For these reasons, there is a dedicated subfield
of optimization called convex optimization that focuses on optimization problems with convex
functions and convex constraints.

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 12

https://towardsdatascience.com/machine-learning-101-an-intuitive-introduction-to-gradient-descent-366b77b52645
https://upload.wikimedia.org/wikipedia/commons/a/a4/Sphere_function_in_3D.pdf

Given that f : Rn → R is twice continuously differentiable, the following are equivalent conditions
of convexity:

(i) f (tw1 + (1 − t)w2) ≤ t f (w1) + (1 − t) f (w2), ∀w1,w2, t ∈ [0, 1]

Figure 9: Any line segment connecting two points of a convex function must lie above the function. Source:
Princeton University ORF 523

(ii) f (w2) ≥ f (w1) + ∇ f (w1)>(w2 − w1), ∀w1,w2

Figure 10: Any line tangent to a convex function must lie below the function. Source: Princeton University
ORF 523

(iii) (∇ f (w2) − ∇ f (w1))>(w2 − w1) ≥ 0, ∀w1,w2

(iv) ∇2 f (w) � 0, ∀w

Let’s study these properties closely. The first condition states that for any two points w1,w2, the
function lies below the line segment connecting w1 and w2. The next condition states that any
tangent line to f must lie below the entire function. The third condition intuitively states that if w2

is greater than w1, then the derivative of w2 is also greater than the derivative of w1.

Finally, the last condition states that the “second derivative” of f is always non-negative. More
rigorously, we can generalize the concept of second derivatives in higher dimensions with the
Hessian. Given that f is twice continuously differentiable, we define the Hessian as the matrix of

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 13

http://www.princeton.edu/~amirali/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
http://www.princeton.edu/~amirali/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
http://www.princeton.edu/~amirali/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf

second partial derivatives of f , denoted by

∇2 f =


∂2 f
∂w2

1
. . . ∂2 f

∂w1∂wd

...
. . .

...
∂2 f

∂wd∂w1
. . . ∂2 f

∂w2
d


The Hessian being PSD is a necessary condition for local minima:

Proposition 2. If w∗ is a local minimum of f and f is twice continuously differentiable in a neigh-
borhood of w∗, then ∇2 f (w∗) is positive semi-definite and ∇ f (w∗) = 0.

Proof. See math4ml. �

Unfortunately, the gradient being zero and the Hessian being PSD together are necessary but not
sufficient conditions local minima (consider the function f (w) = w3 or f (w) = −w4). However, the
gradient being zero and the Hessian being PSD in a neighborhood are sufficient conditions.

Proposition 3. Suppose f is twice continuously differentiable with ∇2 f positive semi-definite in a
neighborhood of w∗, and that ∇ f (w∗) = 0. Then w∗ is a local minimum of f . 1

Proof. See math4ml. �

Since for convex functions the Hessian is PSD at all points in the domain, any critical point is a
local minimum. In fact, any local minimum is also a global minimum, so any point for which the
gradient is zero must be the global minimum.

Proposition 4. Let X be a convex set. If f is convex, then any local minimum of f in X is also a
global minimum.

Proof. See math4ml. �

Consequently we can find any point for which the gradient is zero and guarantee that it is the global
minimum (this is exactly the case in OLS and Ridge Regression since the objective function is PSD
and therefore convex). Note however, that this does not imply that the global minimum is unique
— there could be several different points which achieve the global minimum.

5.1 Strong Convexity
While convex functions guarantee that all local minima are global minima, they do not guarantee
that the global minimum is satisfied uniquely. Strongly convexity is an extension that guarantees
this property. For a strictly positive m ∈ R, a function is m-strongly convex if the following
equivalent conditions hold:

1A subtle point: if ∇2 f (w∗) is positive definite and ∇ f (w∗) = 0, then w∗ is a strict local minimum. We do not have to check that
the Hessian is PSD in a neighborhood of w∗, as this condition is implied from the fact that f is twice continuously differentiable.

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 14

http://gwthomas.github.io/docs/math4ml.pdf
http://gwthomas.github.io/docs/math4ml.pdf
http://gwthomas.github.io/docs/math4ml.pdf

(i) f (tw1 + (1 − t)w2) ≤ t f (w1) + (1 − t) f (w2) − t(1−t)m
2 ‖w2 − w1‖

2, ∀w1,w2, t ∈ [0, 1]

(ii) g(w) = f (w) − m
2 ‖w‖

2 is convex

(iii) f (w2) ≥ f (w1) + ∇ f (w1)>(w2 − w1) + m
2 ‖w2 − w1‖

2, ∀w1,w2

(iv) (∇ f (w2) − ∇ f (w1))>(w2 − w1) ≥ m‖w2 − w1‖
2, ∀w1,w2

(v) ∇2 f (w) � mI, ∀w

The conditions for strong convexity are identical to those for convex functions, but with an addi-
tional term involving m. Strongly convex functions provide several advantages over general convex
functions. From the third condition, we see that strongly convex functions can be lower bounded
by a quadratic function, which establishes the uniqueness of a global minimum.

Proposition 5. Let X be a convex set. If f is strongly convex, then there exists at exactly one local
minimum of f in X. Consequently, it is the unique global minimum of f in X.

Proof. See math4ml. �

If the Hessian of ∇2 f has eigenvalues that are all strictly positive at all points, then f is m-strongly
convex with m equal to the the smallest eigenvalue of ∇2 f (over all points w). Recall from our dis-
cussion of OLS vs. Ridge Regression that while OLS may have several solutions, Ridge Regression
has a unique solution. This is because the Ridge Regression formulation is positive definite and
thus strongly convex, while OLS is positive semi-definite and not necessarily strongly convex.

5.2 Smoothness
While strongly convex functions are lower bounded by a quadratic function, smooth functions are
upper bounded by a quadratic function. 2

An M-smooth (or more formally Lipschitz continuous gradient) function is one for which there
exists a strictly positive M ∈ R such that

‖∇ f (w2) − ∇ f (w1)‖ ≤ M‖w2 − w1‖, ∀w1,w2 (1)

This definition does not assume that f is convex. ?? implies all of the following equivalent condi-
tions:

(i) f (tw1 + (1 − t)w2) ≥ t f (w1) + (1 − t) f (w2) − t(1−t)M
2 ‖w2 − w1‖

2, ∀w1,w2, t ∈ [0, 1]

(ii) f (w2) ≤ f (w1) + ∇ f (w1)>(w2 − w1) + M
2 ‖w2 − w1‖

2, ∀w1,w2

(iii) (∇ f (w2) − ∇ f (w1))>(w2 − w1) ≤ M‖w2 − w1‖
2, ∀w1,w2

(iv) ∇2 f (w) � MI, ∀w
2Not to be confused with smooth functions in the context of real analysis

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 15

http://gwthomas.github.io/docs/math4ml.pdf

When f is convex, then the above conditions also imply ??, establishing equivalence among all
of the conditions. Roughly speaking, smoothness is the counterpart to strong convexity, with the
inequality signs flipped. If the Hessian of ∇2 f has eigenvalues that are bounded from above, f is
M-smooth with M equal to the the maximum eigenvalue of ∇2 f (over all points x).

5.3 Gradient Descent Convergence under Convexity
While gradient descent does not have convergence guarantees in general, we can make theoreti-
cal guarantees when the function is convex. Furthermore, strong convexity and smoothness will
provide lower and upper bounds for f respectively, allowing us to achieve a significantly faster
convergence rate. Assuming that the distance from the initial point w(0) and the optimal point w∗
is R, we have the following:

properties of f stepsize αt convergence rate to f (w∗)
convex, L-Lipschitz R

L
√

t
O(1
√

t
)

m-strongly convex, L-Lipschitz 2
m(t+1) O(1

t)
convex, M-smooth 1

M O(1
t)

m-strongly convex, M-smooth 1
M O(exp

(
−t m

M

)
)

For detailed proofs of rates above, refer to the EE 227C lecture notes. Individually, strong con-
vexity and smoothness will allow us to accelerate the rate of convergence from O(1

√
t
) to O(1

t). Put
together, they allow us to achieve an exponential convergence rate — a significant acceleration!
The quantity κ = M

m is known as the condition number — the ratio of the largest over smallest
singular value of the Hessian of f . Recall from our discussion of OLS vs. Ridge Regression that
Ridge Regression adds a small penalty term λ‖w‖2 to the objective, effectively making the problem
strongly convex. Since the OLS is already smooth as well, then gradient descent can achieve an
exponential rate of convergence to the optimal value. The higher the value of λ, the lower the value
of the condition number κ, which leads to an even faster convergence rate. This of course, comes
at the costs of regularization.

6 Newton’s Method
Up until this point, we have only considered first-order methods to optimize functions. Now,
we will present Newton’s method, an iterative method that utilizes second-order information to
achieve a faster rate of convergence than existing first-order methods. Given an arbitrary twice con-
tinuously differentiable objective function f , Newton’s Method iteratively minimizes the second-
order Taylor expansion of the objective function. Given the current iterate w(t), it minimizes the
following objective:

min
w

f̄ (w) = f (w(t)) + ∇ f (w(t))>(w − w(t)) +
1
2

(w − w(t))>∇2 f (w(t))(w − w(t))

We can minimize f̄ (w) by setting its gradient to zero:

∇ f̄ (w) = ∇ f (w(t)) + ∇2 f (w(t))(w − w(t)) = 0

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 16

https://ee227c.github.io/notes/ee227c-notes.pdf

Which leads to the update rule (otherwise known as Newton step)

w(t+1) = w(t) − ∇2 f (w(t))−1∇ f (w(t))

The updates for Newton’s method and gradient descent are nearly identical:

w(t+1) = w(t) − αt∇ f (w(t)) (Gradient descent)
w(t+1) = w(t) − ∇2 f (w(t))−1∇ f (w(t)) (Newton’s method)

We can think of gradient descent as a Newton update in which we approximate ∇2 f (w(t))−1 by a
scaled version of the identity. That is, gradient descent is equivalent to Newton’s method when
∇2 f (w(t))−1 = αtI where I is the identity matrix.

The algorithm is as follows:

vlined 6 Newton’s Method
Initialize w(0) to a random point

while f (w(t)) not converged do w(t+1) ← w(t) − ∇2 f (w(t))−1∇ f (w(t))

6.1 Alternative Interpretation
Newton’s method can equivalently be viewed as a a root-finding algorithm — specifically it finds
the “roots” of the gradient by iteratively approximating the gradient and finding the root of the
approximation. Newton’s method is agnostic to the type of function that it optimizes — whether
it is the gradient function, or just the objective function. At its simplest form, Newton’s method
can be used to find the roots of a single variable function ϕ : R → R. Our goal is to find a root of
the non-linear equation ϕ(w) = 0. Suppose we have a current estimate of the root ϕ(w(t)). From
Taylor’s theorem, we can express the first-order form of ϕ(w) with respect to ϕ(w(t)) as

ϕ(w) = ϕ(w(t)) + ϕ′(w) · (w − w(t)) + o(
∣∣∣w − w(t)

∣∣∣)
given δ = w − w(t) we equivalently have that

ϕ(w(t) + δ) = ϕ(w(t)) + ϕ′(w) · δ + o(|δ|)

Disregarding the o(|δ|) term, we solve (over δ) the following objective:

ϕ(w(t)) + ϕ′(w(t))δ = 0

Then, δ = −
ϕ(w(t))
ϕ′(w(t)) , leading to the iteration w(t+1) = w(t)−

ϕ(w(t))
ϕ′(w(t)) . We can similarly make an argument

for a multivariate function F : Rd → Rd. Our goal is to solve F(w) = 0. Again, from Taylor’s
theorem we have that

F(w + ∆) = F(w) + JF(w)∆ + o(‖∆‖)

where JF is the Jacobian. This gives us ∆ = −J−1
F (w)F(w), and the iteration

w(t+1) = w(t) − J−1
F (w(t))F(w(t))

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 17

In the context of optimization, Newton’s method is a special application of this root-finding method,
applied to the gradient function. That is, given that we are minimizing f : Rd → R, Newton’s
method finds the roots of the gradient function ∇ f : Rd → Rd. It uses the update rule

w(t+1) = w(t) − ∇2 f (w(t))−1∇ f (w(t))

as the Hessian ∇2 f (w(t)) of the objective function corresponds to the Jacobian J−1
F (w) of the gradi-

ent. Let’s understand the motivation of Newton’s method in close detail. Our goal is to find local
minima for f , points for which it is necessarily true that ∇ f (w) = 0. Consequently, we wish to
find points for which ∇ f (w) = 0. The gradient ∇ f (w) can be difficult or even intractable to work
with, so instead we work with a first-order Taylor approximation of the gradient with respect to
our current iterate w(t). We solve for the roots of the first-order gradient, update our iterate, and
repeat the process. Note that while solving ∇ f (w) = 0 may yield local maxima or even saddle
points, we are finding the roots of the linearized gradient, which is convex — therefore any point
for which the first-order approximation of the gradient is zero yields a global minimum for the
approximation.

6.2 Issues with Newton’s Method
There are a few issues with Newton’s method that we glossed over in our analysis. In general, there
are no guarantees that Newton’s method can converge, and even more concerning, the algorithm
may get stuck as the Hessian ∇2 f (w(t)) may not be invertible. Placing invertibility issues aside,
the most concerning issue is that Newton’s method may not even be attempting to minimize the
objective function. To see why, recall that the goal of each Newton step is to minimize the second-
order approximation, which we do so by setting the gradient of the approximation to zero. This
is not a sound step, as it may yield saddle points or maxima. This can happen when the Hessian
∇2 f (w(t)) has non-positive eigenvalues. In order to ensure that the second order approximation
f̄ (w) yields a unique global minimum, we must ensure that it is strongly convex. We can do so by
regularizing the objective f (w) with an additional λ‖w‖2 term, with an appropriately chosen λ that
shifts all of the eigenvalues of the objective to be positive.

Even when the objective is strongly convex, Newton’s method can be quite unpredictable. For
example, consider the function

f (w) =
√

w2 + 1

essentially a smoothed version of the absolute value |x|. Clearly, the function is minimized at
w∗ = 0. Calculating the necessary derivatives for Newton’s method, we find

f ′(w) =
w

√
w2 + 1

f ′′(w) = (1 + w2)−3/2 .

Note that f (w) is strongly convex since its second derivative strictly positive and 1-smooth (| f ′(w)| <
1). The Newton step for minimizing f (w) is

w(t+1) = w(t) −
f ′(w(t))
f ′′(w(t))

= −w(t)3
.

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 18

The behavior of this algorithm depends on the magnitude of w(t). In particular, we have the follow-
ing three regimes 

|w(t)| < 1 Algorithm converges cubically

|w(t)| = 1 Algorithm oscillates between −1 and 1
|w(t)| > 1 Algorithm diverges

This example shows that even for strongly convex functions with Lipschitz gradients that Newton’s
method is only guaranteed to converge locally. To avoid divergence, a popular technique is to use
a damped step–size:

w(t+1) = w(t) − αt∇
2 f (w(t))−1∇ f (w(t))

6.3 Convergence Analysis
We can ensure that Newton’s method converges, if all of the following conditions are met:

1. ∇2 f (w) is Lipschitz: ‖∇2 f (w) − ∇2 f (w′)‖ ≤ ‖w − w′‖

2. ∃w∗ s.t. ∇ f (w∗) = 0 and ∇2 f (w∗) � αI and ‖w(0) − w∗‖ ≤ α
2

These conditions combined establish local convergence of Newton’s method to a local minimum.
That is, given that the initial point w(0) is sufficiently close to the local minimum, the Hessian is
positive definite at the local minimum, and the Hessian is Lipschitz (meaning that its rate of change
can be bounded), we can ensure a quadratic convergence rate of O(e−et

), which is significantly
faster than the fastest rate for gradient descent that we have seen, O(e−t). Note however, that each
Newton step will involve inverting the Hessian, which itself is an expensive O(d3) operation that
becomes impractical for high dimensional functions.

7 Gauss-Newton Algorithm
Let’s revisit the nonlinear least squares problem. We can try to apply all of the techniques and
approaches we have covered so far to solve this problem, but there is a specialized algorithm for
solving the nonlinear least squares problem, called Gauss-Newton. The Gauss-Newton algorithm
has parallels to Newton’s method, as they both repeatedly make linearly approximations of an
objective and solve that approximation. At each iteration, this method linearly approximates the
function F about the current iterate and solves a least-squares problem involving the linearization
in order to compute the next iterate.

Let’s say that we have a “guess” for w at iteration k, which we denote w(k). We consider the
first-order approximation of F(w) about w(k):

F(w) ≈ F̃(w) = F(w(k)) +
∂

∂w
F(w(k))(w − w(k))

= F(w(k)) + J(w(k))∆w

where ∆w := w − w(k).

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 19

Now that F̃ is linear in ∆w (the Jacobian and F are just constants: functions evaluated at w(k)), our
objective is convex and we can perform linear least squares to form the closed form solution for
∆w. Applying the first-order optimality condition to the objective F̃ yields the following equation:

0 = JF̃(w)>(y − F̃(w)) = J(w(k))>
(
y −

(
F(w(k)) + J(w(k))∆w

))
Note that the Jacobian of the linearized function F̃, evaluated at any w, is precisely J(w(k)). Denot-
ing J = J(w(k)) and ∆y := y − F(w(k)) for brevity, we have

J>(∆y − J∆w) = 0
J>∆y = J>J∆w

∆w = (J>J)−1J>∆y

Comparing this solution to OLS, we see that it is effectively solving

∆w = arg min
δw
‖Jδw − ∆y‖2

where J represents X in OLS, ∆y represents y in OLS, and δw represents w in OLS. At each
iteration we are effectively minimizing the objective with respect to the linearization of F at the
current iterate w(k). Since δF ≈ Jδw, we can expect that the minimization with respect to F̃ is also
optimal with respect to F in the local region around w(k). Recalling that ∆w = w − w(k), we can
improve upon our current guess w(k) with the update

w(k+1) = w(k) + ∆w
= w(k) + (J>J)−1J>∆y

vlined 7 Gauss-Newton
Initialize w(0) with some guess

while w(k) has not converged do Compute Jacobian with respect to the current iterate: J = J(w(k))
Compute ∆y = y − F(w(k))
Update: w(k+1) = w(k) + (J>J)−1J>∆y

Note that the solution will depend on the initial value w(0) in general. There are several choices for
measuring convergence. Some common choices include testing changes in the objective value:∣∣∣∣∣∣L(k+1) − L(k)

L(k)

∣∣∣∣∣∣ ≤ threshold

or in the iterates themselves:

max
j

∣∣∣∣∣∣∣∣∆w j

w(k)
j

∣∣∣∣∣∣∣∣ ≤ threshold

Note 12,©UCB EECS 189, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 20

