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1 Canonical Correlation Analysis
PCA provided us with a dimensionality-reduction approach that didn’t use the labels y in any way.
In that way, it was fundamentally unsupervised by nature. However, we can imagine that there can
be situations in which the most relevant directions in x for understanding y are not necessarily the
directions of greatest variation in x. For example, what if the x data by nature was contaminated
with a strong correlated noise signal? PCA would find the noise dimensions to be those that have
the greatest variation and keep them, throwing away those dimensions where we could actually
hope to get information relevant for predicting y!

The other potentially troublesome aspect of PCA is that it is not invariant to a change of units or
scaling. If we changed the units of some feature from meters to millimeters, then all the values for
that feature would increase by a factor of a thousand, and suddenly, this direction might be favored
by PCA. This is unavoidable because there is no natural reference point that would allow us to
treat units as arbitrary.

Consequently, it is important to have an approach to dimensionality reduction and the discovery of
linear structure from data that does take advantage of paired (x, y) data, preferably in a way that is
robust to linear transformations of both x and y individually.

1.1 A latent space view with Gaussian random variables
What does it mean to extract the linear structure establishing the underlying relationship between
X and Y, two vector-valued quantites of which we have many paired samples. To understand what
this should mean, we need to construct a model. The first thing that we do is assume we have a
joint distribution for X and Y as random variables. In practice, we won’t have the random variables
in distribution, just paired samples of them. But it is easier to start understanding what we want
by assuming that we have the entire distribution. This corresponds to how well we think we can
do given infinite amounts of training data. The next we do is assume a particular form for the
random variables. Since we are interested in linear structure, jointly Gaussian random variables
are a useful model.

Our goal is to extract the underlying relationship or commonality between X and Y. To do this, we
assume that we have three underlying iid standard Gaussian random vectors ZJ (representing the
common/joint part), ZX (representing the randomness that is purely in X and not shared by Y), and
ZY (representing the randomness that is purely in Y and not shared by X). Then we can assume
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that they are related by an underlying linear relationship:XY
 =

A B 0
0 C D



ZX

ZJ

ZY

 (1)

As is typical in these situations, there is going to be some ambiguity in choosing the A,B,C,D
matrices. But the important thing is that somehow the B and C matrices together capture the joint
relationship between X and Y.

How will such a joint relationship manifest in the joint distributions for X and Y? To understand
that, we should first consider the scalar case.

1.2 Correlation and Scalar Gaussians
For the scalar case, A, B,C,D are just real numbers. So, the joint distribution of X,Y is N(0,Σ)

where Σ =

A2 + B2 BC
BC C2 + D2

. The first thing that we notice is that we cannot disentangle B and

C. The second is that the information about the joint relationship (which we know is encoded by
B and C) is all in the cross-covariance term, not in the individual variance term. Recall that we
want to pull out the relationship in a way that does not depend on any individual scaling or linear
transformation that we apply to X and Y .

Here’s a neat fact: if X and Y are jointly Gaussian, i.e.XY
 ∼ N(0,Σ)

then we can define a distribution on individually normalized X and Y and have their joint inter-
relationship entirely captured by ρ(X,Y). First write

ρ(X,Y) =
σxy

σxσy

Then

Σ =

σ2
x σxy

σxy σy2

 =

 σ2
x ρσxσy

ρσxσy σ2
y


so σ−1

x 0
0 σ−1

y

 XY
 ∼ N 0, σ−1

x 0
0 σ−1

y

 Σ

σ−1
x 0
0 σ−1

y

>
∼ N

0, 1 ρ

ρ 1


This ρ quantity is the signature of the joint inter-relationship of the X and Y random variables.

To make things explicit, once we have the ρ = BC√
(A2+B2)(C2+D2)

, we can come up with many possible

backstories for the latent picture behind the observed random variables. Here is one that splits the
influence of the latent space proportionately.

A = σx

√
1 − |ρ| (2)
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B = σx

√
|ρ| (3)

C = σysign(ρ)
√
|ρ| (4)

D = σy

√
1 − |ρ| (5)

Because A2 + B2 = σ2
x, C2 + D2 = σ2

y , and ρ = BC√
(A2+B2)(C2+D2)

, this works.

1.3 Pearson Correlation
Although we defined this ρ above for a pair of jointly Gaussian random variables, it is really about
linear structure. The Pearson Correlation Coefficient ρ(X,Y) is effectively a way to measure how
linearly related (in other words, how well a linear model captures the relationship between) random
variables X and Y .

ρ(X,Y) =
Cov(X,Y)

√
Var(X) Var(Y)

Here are some important facts about it:

• It is commutative: ρ(X,Y) = ρ(Y, X)

• It always lies between -1 and 1: −1 ≤ ρ(X,Y) ≤ 1

• It is completely invariant to affine transformations: for any a, b, c, d ∈ R,

ρ(aX + b, cY + d) =
Cov(aX + b, cY + d)

√
Var(aX + b) Var(cY + d)

=
Cov(aX, cY)

√
Var(aX) Var(cY)

=
a · c · Cov(X,Y)√

a2 Var(X) · c2 Var(Y)

=
Cov(X,Y)

√
Var(X) Var(Y)

= ρ(X,Y)

The correlation is defined in terms of random variables rather than observed data. Assume now
that x, y ∈ Rn are vectors containing n independent observations of X and Y , respectively. Recall
the law of large numbers, which states that for i.i.d. Xi with mean µ,

1
n

n∑
i=1

Xi
a.s.
−→ µ as n→ ∞

We can use this law to justify a sample-based approximation to the mean:

Cov(X,Y) = E[(X − E[X])(Y − E[Y])] ≈
1
n

n∑
i=1

(xi − x̄)(yi − ȳ)
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where the bar indicates the sample average, i.e. x̄ = 1
n

∑n
i=1 xi. Then as a special case we have

Var(X) = Cov(X, X) = E[(X − E[X])2] ≈
1
n

n∑
i=1

(xi − x̄)2

Var(Y) = Cov(Y,Y) = E[(Y − E[Y])2] ≈
1
n

n∑
i=1

(yi − ȳ)2

Plugging these estimates into the definition for correlation and canceling the factor of 1/n leads us
to the Sample Pearson Correlation Coefficient ρ̂:

ρ̂(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2

=
x̃>ỹ

√
x̃>x̃ · ỹ>ỹ

where x̃ = x − x̄, ỹ = y − ȳ

Here are some 2-D scatterplots and their corresponding correlation coefficients:

You should notice that:

• The magnitude of ρ̂ increases as X and Y become more linearly correlated.

• The sign of ρ̂ tells whether X and Y have a positive or negative relationship.

• The correlation coefficient is undefined if either X or Y has 0 variance (horizontal line).

1.4 Canonical Correlation Analysis
Canonical Correlation Analysis (CCA) is a method of modeling the relationship between two
point sets by making use of the correlation coefficients.

As in PCA, it is useful to start with trying to find the directions that represent the most correlation.
You can think of this as finding the parts of Xrv and Yrv that depend on the first coordinate of ZJ,
where we choose the convention that the first coordinate represents the most shared dimension. We
will then see how to move on to get the rest.

Formally, given zero-mean random vectors Xrv ∈ R
p and Yrv ∈ R

q, we want to find projection
vectors u ∈ Rp and v ∈ Rq that maximizes the correlation between Xrv

>u and Yrv
>v:

max
u,v

ρ(Xrv
>u,Yrv

>v) = max
u,v

Cov(Xrv
>u,Yrv

>v)
√

Var(Xrv
>u) Var(Yrv

>v)
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Observe that

Cov(Xrv
>u,Yrv

>v) = E[(Xrv
>u − E[Xrv

>u])(Yrv
>v − E[Yrv

>v])]
= E[u>(Xrv − E[Xrv])(Yrv − E[Yrv])>v]
= u>E[(Xrv − E[Xrv])(Yrv − E[Yrv])>]v
= u>Cov(Xrv,Yrv)v

which also implies (since Var(Z) = Cov(Z,Z) for any random variable Z) that

Var(Xrv
>u) = u>Cov(Xrv,Xrv)u

Var(Yrv
>v) = v>Cov(Yrv,Yrv)v

so the correlation can be written

ρ(Xrv
>u,Yrv

>v) =
u>Cov(Xrv,Yrv)v

√
u>Cov(Xrv,Xrv)u · v>Cov(Yrv,Yrv)v

Unfortunately, we do not have access to the true distributions of Xrv and Yrv, so we cannot compute
these covariances matrices. However, we can estimate them from data. Assume now that we are
given zero-mean data matrices X ∈ Rn×p and Y ∈ Rn×q, where the rows of the matrix X are i.i.d.
samples xi ∈ R

p from the random variable Xrv, and correspondingly for Yrv. Then

Cov(Xrv,Yrv) = E[(Xrv − E[Xrv]︸ ︷︷ ︸
0

)(Yrv − E[Yrv]︸ ︷︷ ︸
0

)>] = E[XrvYrv
>] ≈

1
n

n∑
i=1

xiyi
> =

1
n

X>Y

where again the sample-based approximation is justified by the law of large numbers. Similarly,

Cov(Xrv,Xrv) = E[XrvXrv
>] ≈

1
n

n∑
i=1

xixi
> =

1
n

X>X

Cov(Yrv,Yrv) = E[YrvYrv
>] ≈

1
n

n∑
i=1

yiyi
> =

1
n

Y>Y

Plugging these estimates in for the true covariance matrices, we arrive at the problem

max
u,v

u>
(

1
nX>Y

)
u√

u>
(

1
nX>X

)
u · v>

(
1
nY>Y

)
v

= max
u,v

u>X>Yv
√

u>X>Xu · v>Y>Yv︸                   ︷︷                   ︸
ρ̂(Xu,Yv)

Let’s try to massage the maximization problem into a form that we can reason with more easily.
Our strategy is to choose matrices to transform X and Y such that the maximization problem is
equivalent but easier to understand.

1. First, let’s choose matrices Wx,Wy to whiten X and Y. This will make the (co)variance
matrices (XWx)>(XWx) and (YWy)>(YWy) become identity matrices and simplify our ex-
pression. To do this, note that X>X is positive definite (and hence symmetric), so we can
employ the eigendecomposition

X>X = UxSxUx
>
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Since
Sx = diag(λ1(X>X), . . . , λd(X>X))

where all the eigenvalues are positive, we can define the “square root” of this matrix by taking
the square root of every diagonal entry:

S1/2
x = diag

( √
λ1(X>X), . . . ,

√
λd(X>X)

)
Then, defining Wx = UxS−

1/2
x Ux

>, we have

(XWx)>(XWx) = Wx
>X>XWx

= UxS−
1/2

x Ux
>UxSxUx

>UxS−
1/2

x Ux
>

= UxS−
1/2

x SxS−
1/2

x Ux
>

= UxUx
>

= I

which shows that Wx is a whitening matrix for X. The same process can be repeated to
produce a whitening matrix Wy = UyS−

1/2
y Uy

> for Y.

Let’s denote the whitened data Xw = XWx and Yw = YWy. Then by the change of variables
uw = W−1

x u, vw = W−1
y v,

max
u,v

ρ̂(Xu,Yv) = max
u,v

(Xu)>Yv
√

(Xu)>Xu(Yv)>Yv

= max
u,v

(XWxW−1
x u)>YWyW−1

y v√
(XWxW−1

x u)>XWxW−1
x u(YWyW−1

y v)>YWyW−1
y v

= max
uw,vw

(Xwuw)>Ywvw
√

(Xwuw)>Xwuw(Ywvw)>Ywvw

= max
uw,vw

uw
>Xw

>Ywvw
√

uw
>Xw

>Xwuw · vw
>Yw

>Ywvw

= max
uw,vw

uw
>Xw

>Ywvw
√

uw
>uw · vw

>vw︸              ︷︷              ︸
ρ̂(Xwuw,Ywvw)

Note we have used the fact that Xw
>Xw and Yw

>Yw are identity matrices by construction.

2. Second, let’s choose matrices Dx, Dy to decorrelate Xw and Yw. This will let us simplify the
covariance matrix (XwDx)>(YwDy) into a diagonal matrix.

Recall that our ultimate goal is to understand the underlying latent structure behind Xrv and
Yrv. The whitening was a normalizing change of coordinates. The decorrelation is there
so that we can pick out independent underlying components of ZJ. (Since jointly Gaussian
random variables are independent if they are uncorrelated.) Alternatively, you can consider
decorrelation as reducing the problem to a sequence of scalar problems.
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To do this, we’ll make use of the SVD:

Xw
>Yw = USV>

The choice of U for Dx and V for Dy accomplishes our goal, since

(XwU)>(YwV) = U>Xw
>YwV = U>(USV>)V = S

Let’s denote the decorrelated data Xd = XwDx and Yd = YwDy. Then by the change of variables
ud = D−1

x uw = Dx
>uw, vd = D−1

y vw = Dy
>vw,

max
uw,vw

ρ̂(Xwuw,Ywvw) = max
uw,vw

(Xwuw)>Ywvw
√

uw
>uw · vw

>vw

= max
uw,vw

(XwDxD−1
x uw)>YwDyD−1

y vw√
(Dxuw)>Dxuw · (Dyvw)>Dyvw

= max
ud ,vd

(Xdud)>Ydvd
√

ud
>ud · vd

>vd

= max
ud ,vd

ud
>XdYdvd

√
ud
>ud · vd

>vd︸             ︷︷             ︸
ρ̂(Xdud ,Ydvd)

= max
ud ,vd

ud
>Svd

√
ud
>ud · vd

>vd

Without loss of generality, suppose ud and vd are unit vectors1 so that the denominator becomes 1,
and we can ignore it:

max
ud ,vd

ud
>S vd

√
ud
>ud · vd

>vd
= max
‖ud‖=1
‖vd‖=1

ud
>Svd

‖ud‖‖vd‖
= max
‖ud‖=1
‖vd‖=1

ud
>Svd

The diagonal nature of S implies S i j = 0 for i , j, so our simplified objective expands as

ud
>Svd =

∑
i

∑
j

(ud)iS i j(vd) j =
∑

i

S ii(ud)i(vd)i

where S ii, the singular values of Xw
>Yw, are arranged in descending order. Thus we have a weighted

sum of these singular values, where the weights are given by the entries of ud and vd, which are
constrained to have unit norm. To maximize the sum, we “put all our eggs in one basket” and
extract S 11 by setting the first components of ud and vd to 1, and the rest to 0:

ud =


1
0
...

0

 ∈ R
p vd =


1
0
...

0

 ∈ R
q

1 Why can we assume this? Observe that the value of the objective does not change if we replace ud by αud and vd by βvd,
where α and β are any positive constants. Thus if there are maximizers ud, vd which are not unit vectors, then ud/‖ud‖ and vd/‖vd‖

(which are unit vectors) are also maximizers.
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Any other arrangement would put weight on S ii at the expense of taking that weight away from
S 11, which is the largest, thus reducing the value of the sum.

Finally we have an analytical solution, but it is in a different coordinate system than our original
problem! In particular, ud and vd are the best weights in a coordinate system where the data has
been whitened and decorrelated. To bring it back to our original coordinate system and find the
vectors we actually care about (u and v), we must invert the changes of variables we made:

u = Wxuw = WxDxud v = Wyvw = WyDyvd

More generally, to get the best k directions, we choose

Ud =

 Ik

0p−k,k

 ∈ Rp×k Vd =

 Ik

0q−k,k

 ∈ Rq×k

where Ik denotes the k-dimensional identity matrix. Then

U = WxDxUd V = WyDyVd

Note that Ud and Vd have orthogonal columns. The columns of U and V, which are the projection
directions we seek, will in general not be orthogonal, but they will be linearly independent (since
they come from the application of invertible matrices to the columns of Ud,Vd).

Following (2), (3), (4), and (5), it is also possible to use what we have calculated to give an explicit
learned latent-space realization for the Xrv,Yrv in terms of standard Gaussian random variables ZX,
ZJ, ZY . In particular, matrices A,B,C,D of the appropriate sizes. This is left as an exercise to the
reader once you realize that after whitening and decorrelating (both invertible transformations), we
are left with a collection of scalar problems that would represent independent random variables if
all the variables were indeed jointly Gaussian.

CCA thus illustrates how it is possible to learn a latent representation for common (linear) structure
given paired data. This is a powerful idea not limited to the specific case of CCA. In effect, CCA
shows how we can discover (synthesize) features that distill what aspects of input data is relevant
for understanding output data.

This is subtly different from what happens in ordinary least squares because in ordinary least
squares, each individual element of y is predicted independently. In OLS, the different output
variables are not used collectively to distill the most relevant dimensions of the input. By contrast,
in CCA, the different output variables do vote collectively to determine relevant dimensions in the
input.

1.5 Comparison with PCA
An advantage of CCA over PCA is that it is invariant to scalings and affine transformations of X
and Y. Consider a simplified scenario in which two matrix-valued random variables X,Y satisfy
Y = X + ε where the noise ε has huge variance. What happens when we run PCA on Y? Since
PCA maximizes variance, it will actually project Y (largely) into the column space of ε! However,
we’re interested in Y’s relationship to X, not its dependence on noise. How can we fix this? As it
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turns out, CCA solves this issue. Instead of maximizing variance of Y, we maximize correlation
between X and Y. In some sense, we want the maximize “predictive power” of information we
have.

1.6 CCA regression
Once we’ve computed the CCA coefficients, one application is to use them for regression tasks,
predicting Y from X (or vice-versa). Recall that the correlation coefficient attains a greater value
when the two sets of data are more linearly correlated. Thus, it makes sense to find the k×k weight
matrix A that linearly relates XU and YV. We can accomplish this with ordinary least squares.

Denote the projected data matrices by Xc = XU and Yc = YV. Observe that Xc and Yc are zero-
mean because they are linear transformations of X and Y, which are zero-mean. Thus we can fit a
linear model relating the two:

Yc ≈ XcA

The least-squares solution is given by

A = (Xc
>Xc)−1Xc

>Yc

= (U>X>XU)−1U>X>YV

However, since what we really want is an estimate of Y given new (zero-mean) observations X̃
(or vice-versa), it’s useful to have the entire series of transformations that relates the two. The
predicted canonical variables are given by

Ŷc = X̃cA = X̃U(U>X>XU)−1U>X>YV

Then we use the canonical variables to compute the actual values:

Ŷ = Ŷc(V>V)−1V>

= X̃U(U>X>XU)−1(U>X>YV)(V>V)−1V>

We can collapse all these terms into a single matrix Aeq that gives the prediction Ŷ from X̃:

Aeq = U︸︷︷︸
projection

(U>X>XU)−1︸         ︷︷         ︸
whitening

(U>X>YV)︸      ︷︷      ︸
decorrelation

(V>V)−1V>︸      ︷︷      ︸
projection back
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