
EECS 189 Introduction to Machine Learning
Fall 2020 Note 10
In machine learning, the data we have are often very high-dimensional. In fact, when we introduced
the idea of features (like polynomial features), these made the dimensionality of the data even
higher. The kernel trick was something that let us partially deal with this by working with vectors
only as long as there are training samples.

However, there are a number of reasons why we might want to work with a lower-dimensional
representation:

• Visualization (if we can get it down to 2 or 3 dimensions), e.g. for exploratory data analysis

• Reduce computational load

• Reduce variance in estimation — regularize the problem

So, how can we reduce the dimensionality of data? There are obvious ways — just keeping a subset
of features. But which features? In general, that presumably depends on what you are trying to do.
What could you do if you didn’t know what you were trying to predict with those features? This
corresponds to unsupervised dimensionality reduction. There are a couple of intuitive choices.
First, just pick some features at random to keep. This is appealing for its symmetry, but it makes
you wonder if we could do better by actually looking at the data before deciding which features to
keep.

Consequently, another thing that you could do is to just keep the few features that have the most
variability — which you could measure by the variance of that feature. But what if two of the most
variable features were actually very correlated to each other? Should we really be including both
of them? Maybe we should focus on “fresh” variability somehow. To do this, maybe it would be
helpful to allow ourselves to synthesize linear combinations of features and keep some of these
synthesized features.

1 Principal Component Analysis
Principal Component Analysis (PCA) is exactly such an unsupervised dimensionality reduction
technique. Given a matrix of data points, it finds one or more orthogonal directions that capture
the largest amount of variance in the data. Intuitively, the directions with less variance contain less
information and may be discarded without introducing too much error. One of the practical mo-
tivations for taking this kind of unsupervised approach to dimensionality reduction is that labeled
training data might be hard or expensive to get, but unlabeled training data (i.e. no y just x) might
be more easily available. PCA is able to extract meaningful directions from such unlabeled data.

Not coincidentally, PCA turns out to be intimately connected to the ideas of Total Least Squares.
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1.1 Projection
Let us first review the meaning of scalar projection of one vector onto another. If v ∈ Rd is a unit
vector, i.e. ‖v‖ = 1, then the scalar projection of another vector x ∈ Rd onto v is given by x>v. This
quantity tells us roughly how much of the projected vector x lies along the direction given direction
v. Why does this expression make sense? Recall the slightly more general formula which holds
for vectors of any length:

x>v = ‖x‖‖v‖ cos θ

where θ is the angle between the vectors. In this case, since ‖v‖ = 1, the expression simplifies to
x>v = ‖x‖ cos θ. But since cosine gives the ratio of the adjacent side (the projection we want to
find) to the hypotenuse (‖x‖), this is exactly what we want:

One approach to dimensionality reduction by using projections is to choose projections at ran-
dom — sample from an iid Gaussian and then normalize the vector to get our v. This creates a
degree of fairness across the individual features since an iid Gaussian is uniform over directions
in d-dimensional space. As you will see in homework, this approach to dimensionality reduction
actually has many interesting properties. By construction, however, it does not look at any data
itself and thus is unable to prioritize important vs unimportant feature directions.

1.2 The first principal component
Let X ∈ Rn×d be our matrix of data, where each row is a d-dimensional datapoint. These are to be
thought of as i.i.d. samples from some random vector x.

We will assume that the data points have mean zero; if this is not the case, we can make it so by
subtracting the average of all the rows, x̄ = 1

n

∑n
i=1 xi, from each row. The motivation for this is

that we want to find directions of high variance within the data, and variance is defined relative
to the mean of the data. If we did not zero-center the data, the directions found would be heavily
influenced by where the data lie relative to the origin, rather than where they lie relative to the other
data, which is more useful.

Since X is zero-mean, the sample variance of the datapoints’ projections onto a unit vector v is
given by

1
n

n∑
i=1

(xi
>v)2 =

1
n
‖Xv‖2 =

1
n

v>X>Xv
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where v is constrained to have unit norm.1

With this motivation, we define the first loading vector v1 as the solution to the constrained opti-
mization problem

max
v

v>X>Xv subject to v>v = 1

Note that we have discarded the positive constant factor 1/n which does not affect the optimal
value of v.

To reduce this constrained optimization problem to an unconstrained one, we write down its La-
grangian:

L(v) = v>X>Xv − λ(v>v − 1)

First-order necessary conditions for optima imply that

0 = ∇L(v1) = 2X>Xv1 − 2λv1

Hence X>Xv1 = λv1, i.e. v1 is an eigenvector of X>X with eigenvalue λ. Since we constrain
v1
>v1 = 1, the value of the objective is precisely

v1
>X>Xv1 = v1

>(λv1) = λv1
>v1 = λ

so the optimal value is λ = λmax(X>X), which is achieved when v1 is a unit eigenvector of X>X
corresponding to its largest eigenvalue.

1.3 Finding more principal components
We have seen how to find the first loading vector, which is the unit vector that maximizes the
variance of the projected data points. However, in most applications, we want to find more than
one direction. We want the subsequent directions found to also be directions of high variance,
but they ought to be orthogonal to the existing directions in order to minimize redundancy in the
information captured. Thus we define the kth loading vector vk as the solution to the constrained
optimization problem

max
v

v>X>Xv subject to v>v = 1

v>vi = 0, i = 1, . . . , k − 1

We claim that vk is a unit eigenvector of X>X corresponding to its kth largest eigenvalue.
1 To make sense of the sample variance, recall that for any random variable Z,

Var(Z) = E[(Z − E[Z])2]

so if E[Z] = 0 then Var(Z) = E[Z2]. In practice we will not have the true random variable Z, but rather i.i.d. observations z1, . . . , zn

of Z. The expected value can then be approximated by a sample average, i.e.

E[Z2] ≈
1
n

∑
i=1

z2
i

which is justified by the law of large numbers, which states that (under mild conditions) the sample average converges to the
expected value as n → ∞. In our case the random variable Z is the principal component v>x, and the i.i.d. observations are the
projections of our datapoints, i.e. zi = v>xi.
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Proof. By induction on k. We have already shown that the claim is true for the base case k = 1
(where there are no orthogonality constraints). Now assume that it is true for the first k loading
vectors v1, . . . , vk, and consider the problem of finding vk+1.

By the inductive hypothesis, we know that v1, . . . , vk are orthonormal eigenvectors of X>X. Denote
the ith largest eigenvalue of X>X by λi, noting that X>Xvi = λivi.

The Lagrangian of the objective function is

L(v) = v>X>Xv − λ(v>v − 1) +

k∑
i=1

ηiv>vi

First-order necessary conditions for optima imply that

0 = ∇L(vk+1) = 2X>Xvk+1 − 2λvk+1 +

k∑
i=1

ηivi

This implies that, if vk+1 is orthogonal to v1, . . . , vk (as we constrain it to be), then

0 = v j
>0

= 2v j
>X>Xvk+1 − 2λ v j

>vk+1︸ ︷︷ ︸
0

+

k∑
i=1

ηi v j
>vi︸︷︷︸
δi j

= 2(X>Xv j)>vk+1 + η j

= 2(λ jv j)>vk+1 + η j

= 2λ j v j
>vk+1︸ ︷︷ ︸

0

+η j

= η j

for all j = 1, . . . , k.

Plugging these values back into the optimality equation above, we see that vk+1 must satisfy
X>Xvk+1 = λvk+1, i.e. vk+1 is an eigenvector of X>X with eigenvalue λ. As before, the value of
the objective function is then λ. To maximize, we want the largest eigenvalue, but we must re-
spect the constraints that vk+1 is orthogonal to v1, . . . , vk. Clearly if vk+1 is equal to any of these
eigenvectors (up to sign), then one of these constraints will not be satisfied. Thus to maximize the
expression, vk+1 should be a unit eigenvector of X>X corresponding to its (k + 1)st largest eigen-
value. By the spectral theorem, we can always choose this vector in such a way that it is orthogonal
to v1, . . . , vk, so we are done. �

We have shown that the loading vectors are orthonormal eigenvectors of X>X. In other words, they
are right-singular vectors of X, so they can all be found simultaneously by computing the SVD of
X.

1.4 Projecting onto the PCA coordinate system
Once we have computed the loading vectors, we can use them as a new coordinate system. The
kth principal component of a datapoint xi ∈ R

d is defined as the scalar projection of xi onto the kth
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loading vector vk, i.e. xi
>vk. We can compute all the principal components of all the datapoints at

once using a matrix-matrix multiplication:

Zk = XVk

where Vk ∈ R
d×k is a matrix whose columns are the first k loading vectors v1, . . . , vk.

Below we plot the result of such a projection in the case d = k = 2:

Figure 1: Left:data points; Right: PCA projection of data points

Observe that the data are uncorrelated in the projected space. Also note that this example does not
show the power of PCA since we have not reduced the dimensionality of the data at all – the plot
is merely to show the PCA coordinate transformation.

Once we’ve computed the principal components, we can approximately reconstruct the original
points by

X̃k = ZkVk
> = XVkVk

>

The rows of X̃k are the projections of the original rows of X onto the subspace spanned by the
loading vectors.

1.5 Other derivations of PCA
We have given the most common derivation of PCA above, but it turns out that there are other
ways to solve the optimization problem, or to arrive at the same formulation. These give us helpful
additional perspectives on what PCA is doing.

1.6 Changing coordinates
In PCA we want to find the unit length v that maximizes v>X>Xv. It turns out that there is a result,
sometimes referred to as the variational characterization of eigenvalues, that tells us which
vectors v achieve this. The key idea in the proof is a length-preserving change of coordinates.

Theorem. Let A ∈ Rd×d be symmetric. Then for any v ∈ Rd satisfying ‖v‖2 = 1,

λmin(A) ≤ v>Av ≤ λmax(A)

where for both bounds, equality holds if and only if v is a corresponding eigenvector.
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Proof. We show only the max case because the argument for the min case is entirely analogous.

Since A is symmetric, we can decompose it as A = QΛQ>, where Q ∈ Rd×d is orthogonal and
Λ = diag(λ1, . . . , λd) contains the eigenvalues of A. For any v satisfying ‖v‖2 = 1, define z = Q>v,
noting that the relationship between v and z is one-to-one because Q is invertible and that ‖z‖2 = 1
because Q is orthogonal. Hence

max
‖v‖2=1

v>Av = max
‖z‖2=1

z>Λz = max
‖z‖22=1

d∑
i=1

λiz2
i

We note that
d∑

i=1

λiz2
i ≤

d∑
i=1

λmax(A)z2
i = λmax(A)

d∑
i=1

z2
i

so the constraint ‖z‖22 =
∑d

i=1 z2
i = 1 implies

d∑
i=1

λiz2
i ≤ λmax(A)

Defining I = {i : λi = λmax(A)}, the index set of the largest eigenvalue, we see that the bound is
achieved with equality if and only if

∑
i∈I z2

i = 1 and z j = 0 for j < I. Suppose z∗ satisfies this
condition. Then writing q1, . . . ,qd for the columns of Q, we have

v∗ = Qz∗ =

d∑
i=1

z∗i qi =
∑
i∈I

z∗i qi

Recall that q1, . . . ,qd are eigenvectors of A and form an orthonormal basis for Rd. Therefore by
construction, the set {qi : i ∈ I} forms an orthonormal basis for the eigenspace of λmax(A). Hence
v∗, which is a linear combination of these, lies in that eigenspace and thus is an eigenvector of A
corresponding to λmax(A).

Conversely, suppose v ∈ Rd is unit-length but not an eigenvector corresponding to λmax(A). The
vectors q1, . . . ,qd are still a basis for Rd, so we have a unique expansion

v = z1q1 + · · · + zdqd

Since v does not lie in the eigenspace of λmax(A), one of the components z j must be nonzero for an
index j < I, so equality does not hold in the bound above. �

With this result established, we see that the vector we seek (which maximizes v>X>Xv) must be an
eigenvector corresponding to λmax(X>X). This is the same solution we derived via the Lagrangian
formulation above.

1.7 Minimizing reconstruction error
Recall that ordinary least squares minimizes the vertical distance between the fitted line and the
data points. We show that PCA can be interpreted as minimizing the perpendicular distance be-
tween the data points and the subspace onto which we are projecting them.
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The orthogonal projection of a vector x onto the subspace spanned by a unit vector v equals v
scaled by the scalar projection of x onto v:

Pvx = (x>v)v

Suppose we want to minimize the total reconstruction error:

n∑
i=1

‖xi − Pvxi‖
2

For any x ∈ Rd, we know x − Pvx ⊥ Pvx, so the Pythagorean Theorem tells us that

‖x − Pvx‖2 + ‖Pvx‖2 = ‖x‖2

Thus
n∑

i=1

‖xi − Pvxi‖
2 =

n∑
i=1

(
‖xi‖

2 − ‖Pvxi‖
2
)

=

n∑
i=1

‖xi‖
2 −

n∑
i=1

‖(xi
>v)v‖2

=

n∑
i=1

‖xi‖
2 −

n∑
i=1

(xi
>v)2

Then since the first term
∑n

i=1 ‖xi‖
2 is constant with respect to v, minimizing reconstruction error

is equivalent to maximizing
∑n

i=1(xi
>v)2, which is (up to an irrelevant positive constant factor 1/n)

the projected variance.

Another way to write this interpretation is that the reconstructed matrix X̃k is the best rank-k ap-
proximation to X in the Frobenius norm. To see this, first note that (writing X =

∑d
i=1 σiuivi

>)

X̃k = XVkVk
> =

d∑
i=1

σiuivi
>VkVk

>

By orthonormality, the product vi
>Vk results in a k-dimensional row vector with 1 in the ith place

and 0 everywhere else, i.e. ei
>, as long as i ≤ k. In this case,

vi
>VkVk

> = ei
>Vk

> = (Vkei)> = vi
>

If i > k, vi
>Vk = 0>, so the term disappears. Therefore we see that

X̃k =

d∑
i=1

σiuivi
>VkVk

> =

k∑
i=1

σiuivi
>

which is the best rank-k approximation to X by the Eckart-Young theorem.
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1.8 Probabilistic PCA
We have seen probabilistic motivations or derivations of many of the methods discussed so far in
this class. In a similar vein, probabilistic PCA (PPCA) is a generative model for PCA. Here we
make the following assumptions about how the data were generated: for each datapoint i, there is
a k-dimensional latent variable

zi ∼ N(0, I)

which we cannot observe, and the actual d-dimensional observation is distributed conditionally on
this latent variable as

xi|zi ∼ N(Λzi + µ,Ψ)

Here Λ ∈ Rd×k and µ ∈ Rd are parameters to be estimated. Since zi is Gaussian and xi|zi is

Gaussian,
xi

zi

 is Gaussian, so its marginal xi is Gaussian. In particular, by integrating out the

latent variable
p(xi) =

∫
z

p(xi, z) dz =

∫
z

p(xi|z)p(z) dz

one can show that
xi ∼ N(µ,ΛΛ>+Ψ)

It is common to assumeΨ = σ2I. In this case, if we let σ2 → 0, we recover the original PCA solu-
tion in the sense that the columspace of Λ̂mle approaches the PCA subspace (i.e. the columnspace
of Vk). 2

2 See Tipping and Bishop’s original paper for derivations and more information.
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