
CS 189/289
One-class intro to “causality”
1. Some intuition
2. Some formalism

This lecture is based in part on notes from Prof. Moritz Hardt. 
For more details, see Chapters 9 & 10 here: https://mlstory.org/
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ML prediction: causation or correlation?
• So far: take observed data,   

௜ ௜ ; propose a model 
class, ௜ ఏ ௜ ఏ
•MLE to obtain 
• Suppose get 99% accuracy with 
cross-validation.
• Is ఏ capturing the 
underlying causes of ? 
•Does it matter?

Actual vs. predicted sale price of house



ML prediction: causation or correlation?
Actual vs. predicted sale price of house

WSJ NOV. 2021 : “The company 
expects to record losses of more 
than $500 million from home-
flipping by the end of this year and 
is laying off a quarter of its staff.”



ML prediction: causation or correlation?
• This is a consequence of 

economic wealth.
• Richer countries spend more 

on education and luxury 
goods, like chocolate.

economic wealth

chocolate 
consumption

# Nobel prizes
per capita

𝑥

𝑦 ൌ 𝑓ఏሺ𝑥ሻ



ML prediction: causation or correlation?

incorrect



A classic conundrum: kidney stone treatment

Treatment BTreatment ASize of stones

289/350 (83%)273/350 (78%)All sizes

• Effectiveness of treatments A vs B for 
kidney stones from hospital data.

• Goal: is treatment A or B better?



• Effectiveness of treatments A vs B for 
kidney stones from hospital data.

• Goal: is treatment A or B better?
Treatment BTreatment ASize of stones

289/350 (83%)273/350 (78%)All sizes

55/80 (69%)192/263 (73%)Large stones

234/270 (87%)81/87 (93%)Small stones
[Charig et al. BMJ 1986]

% assigned B

80/343=23%

270/357=76%

#

263+80=343

87+270=357

Possible explanation: doctors assign B more often 
to small stones, which are easier to treat.

Huh? What is going on? Which treatment 
would you want?

A classic conundrum: kidney stone treatment



• Effectiveness of treatments A vs B for 
kidney stones from hospital data.

• Goal: is treatment A or B better?
Treatment BTreatment ASize of stones

289/350 (83%)273/350 (78%)All sizes

55/80 (69%)192/263 (73%)Large stones

234/270 (87%)81/87 (93%)Small stones
[Charig et al. BMJ 1986]

• This is an example of 
Simpson’s paradox.

• With a more careful 
understanding, it is not 
really paradoxical.

• The stone size is a 
confounding variable:

Possible explanation: doctors assign B more often 
to small stones, which are easier to treat.

Huh? What is going on? Which treatment 
would you want?

A classic conundrum: kidney stone treatment



One visualization of Simpson’s Paradox

[The book of why: the new science of cause and effect, Judea Pearl and Dana MacKenzie.]



Are probabilistic graphical models causal models?
•Previously you learned about probabilistic
graphical models, like HMMs.
• In general, these models do not reason 
about causes, nor speak to causality.
•With additional assumptions, we can 
leverage the machinery of graphical models 
to reason about causality: Structural Equation 
Models (SEM) (soon).



More on Simpson’s Paradox

Treatment BTreatment ASize of stones

289/350 (83%)273/350 (78%)All sizes

55/80 (69%)192/263 (73%)Large stones

234/270 (87%)81/87 (93%)Small stones
[Charig et al. BMJ 1986]

Formally, the paradox can be stated as follows:
(“All sizes”)

(“Large stones”)
(“Small stones:)

probability of recovery

𝑦

𝐴 𝑜𝑟 𝐵

𝑋 or ൓𝑋



Revisiting Simpson’s Paradox
Formally, the paradox can be stated as follows:

(“All sizes”)
(“Large stones”)

(“Small stones:)

•Mathematically, no contradiction, so why the seeming paradox?
•We tend to interpret conditional events as actions, but they are not.
• Conditional events are observations.
•We’ll learn more.



Revisiting Simpson’s Paradox
•We observe doctors in a hospital.
• i.e., we see who gets treatment A or B, according to the doctor’s 

internal decisions system (“natural inclination”). 
• There is no intervention (no action), just passive observation.
• If we could redesign the experiment, how might we fix this 

problem so that we avoid Simpson’s paradox?
Treatment BTreatment ASize of stones

289/350 (83%)273/350 (78%)All sizes

55/80 (69%)192/263 (73%)Large stones

234/270 (87%)81/87 (93%)Small stones

Size of stone

Recovery
Treatment



Randomized Controlled Trial (RCT)
•Are the “gold standard” way to conduct such 
experiments.
• i.e., disallow the use of the doctor’s internal 
decision system in assigning the choice of 
treatment.
•Replace the doctor’s decision with                           
one created at random—we act on the    
system.
•Now the doctor cannot more              
frequently assign Treatment B                            
to the smaller stones.

Size of stone

Recovery
Treatment



Randomized Controlled Trial (RCT)
•This is the difference between an observational
and a randomized experiment.
•The randomization process is called an 
intervention (or action) in the field of causality.

Size of stone

Recovery
Treatment

• It is easier to extract causality using 
interventional data than using 
observational data.
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How do we formalize actions?
•We saw how intervening on upstream causes of the 
treatment variable could eliminate the confounding variable.
•Actions are not conditional events, so we need a new 
notation/concept beyond .
• The “do” action notation looks like conditional probabilities, 
but isn’t,  .
•We’ll discuss the relationship between these.



•We are going to work our way toward the formalism of 
Structural Equation Models (SEMs).
• SEMs are equivalent to defining a causal data-generating 
process.
• i.e., think of SEMs as writing code that would generate the 
data, step-by-step, through each causal mechanism.

How do we formalize actions?



• Suppose someone asks you to help them understand some data 
they have.
• They ask if you would prefer to have the source code that 

generated it, or just the data itself. Which would you prefer?

Data vs. source code to generate it?



• Suppose someone asks you to help them understand some data 
they have.
• They ask if you would prefer to have the source code that 

generated it, or just the data itself. Which would you prefer?

Data vs. source code to generate it?

• The code contains more information 
(we can generate data from the 
program, but not the other way 
around).

• Also, we can change the code and generate different data, 
seeing which variables have effects on which other variables.



Programming intuition example (SEM)
Suppose you have a program to generate a 
distribution, step-by-step:

• This induces a joint 
distribution over the 
binary RVs, .

• We can compute various 
probabilities of potential 
interest:

• Thus .  Does this mean causes ? 
• If it did, then intervening/acting on would change . Lets try it.



Programming intuition example (SEM)
Suppose you have program to generate a 
distribution, step-by-step:

• This induces a joint 
distribution over the 
binary RVs, .

• We can compute various 
probabilities of potential 
interest:

• Thus .  Does this mean cause ? 
• If it did, then intervening/acting on would change . Lets try it.

• In this new program, the probability of is still 
equal to ଵ

଺
.

• We write this as ଵ
଺
, and call 

it a do-intervention.
• Generally 



A “program” as a Structural Equation Model (SEM)
• Each of the two programs we saw actually 

define an SEM.
• Each comes with an acyclic assignment 

graph called a causal graph.

• One variable causes another if there exists 
a directed path between the two.

• From the graph (also from the program) 
we see that causes each of and .

• Causes are your ancestors (direct or 
indirect causes).



Formally: Structural Equation Model (SEM)
SEMs consist of:
• A list of assignments to generate a distribution on ଵ ௠

from independent random (noise) variables, ଵ ௠ᇱ .  
• Must be acyclic assignments (graphical models need not be).

model model 

𝑍 ൌ 8

“probability of event after applying do operator”:



Causal effects
• Often denotes the presence or absence of an 

intervention or treatment. 
• is called the causal effect of on .
• The average treatment effect is in turn given by       

.
• It tells us how much treatment (causally) increases the 

expectation of relative to no treatment                 
(action vs ).



A fundamental question in causality
When/how can we estimate causal effects 
from observational data?

Equivalently:

When/how can we express do-interventions (actions) with 
a formula that involves only conditional probabilities? 



Problem of confounding: doing vs observing
Two variables, and are confounded if in a causal graph some 
confounding variable, , is pointing (causally effecting) each of 
and :

In such a scenario, 

e.g. “stone size” is 
a confounder

stone size

treatment outcome

e.g. “exercise” is a 
confounder 



Problem of confounding: doing vs observing

In such a scenario, 

e.g. “stone size” is 
a confounder

stone size

treatment outcome

e.g. “exercise” is a 
confounder 

So how to estimate 
with only observational data?



Eliminate confounding from observational analysis
• To eliminate confounding, we need to hold the confounding 

variable constant in our analyses (called controlling for that variable).
• To control for kidney stone size, we must compute the treatment 

effect for each group (stone size) separately.
• Then we can average the effects from each group to get the overall 

effect.

To do so, we use the adjustment formula:

Then we can easily compute the treatment effect:                      
!

Critically, this 
requires 
knowledge of…? 

…of the SEM to 
read off the 
confounding 
variables!

Size of stone

Recovery Treatment



The adjustment formula:

Side note on the adjustment formula

In contrast to the law of total probability:
𝑃 𝑌 𝑋 ൌ෍𝑃 𝑌,𝑍 𝑋

௭

ൌ෍𝑃 𝑌 𝑋,𝑍 𝑃ሺ𝑍|𝑋ሻ
௭



Eliminating confounding
• Should we control for as many variables as we 

can get our hands on?
• No: we should not control for mediators

(variables on a “direct path” between and ).
• Controlling for mediators will reduce the effect 

size we find between and .
• e.g. if control for tar deposit, then will reduce 

the ability to see causal effect .

𝑍 is a mediator 
between 𝑋 and 𝑌

smoking

tar deposit

lung cancer



“Collider” variables
• Collider variables are those with incoming effects from and .
• Conditioning on colliders can create anti-correlation between 

and when they are actually uncorrelated in the population 
(“Berkson’s law” or “collider bias”).

𝑍 is a collider 
between 𝑋 and 𝑌

pneumonia

hospital admission

broken leg

e.g. 
• If we are in the hospital and observe that an 

individual has a broken leg, what does that tell us 
about the patient having pneumonia?

• Since a broken leg is a sufficient cause for being in 
the hospital, it “explains away” the other causes:

• If we condition on we might incorrectly conclude 
that and are anti-correlated.



What have we bought ourselves?
1. We have an intuition for how confounding variables can mess up 

observational analyses (e.g. stones, treatment & Simpson’s paradox).
2. We understand how doing is different from conditioning:
3. When two variables are confounded, conditioning is the not the 

same as doing.
4. Introduced the bare bones concepts of SEMs, and how they let us 

reason about confounding and perform control/adjustment.
5. But all of this formalism is only as good as the SEM is an accurate 

depiction of the true causal mechanisms!
6. How might we create an accurate SEM?
7. How do we know if our SEM is the correct causal model?



Determining validity of causal models
• In mainstream (non-causal) ML, we can estimate how good a model 

is using cross-validation.
• There is no analog for determining the validity of an SEM.
• We must use domain knowledge, expertise, or RCTs.
• To get a causal effects from observational studies we need to make 

assumptions about the “causal story” formally using causal 
models/graphs, which encode our assumptions about the world.

• Given a causal graph, we can decide what variables are confounders, 
and the do the appropriate computations.



EXTRA SLIDES



Proof of the Adjustment Formula (simple case)


