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One-class intro to “causality”

T USED T THINK,
CORRELATION MPUED

1. Some intuition cusaTon. |
2. Some formalism g %

THEN I Tock A

STATISTICS CLASS.
Now I CoN'T,

B

SOUNDS LIKE THE
CLASS HELPED.

\ WELL, MAYBE.
/

f 1

This lecture is based in part on notes from Prof. Moritz Hardt.
For more details, see Chapters 9 & 10 here: https://mlstory.org/
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1. Some intuition




ML prediction: causation or correlation?

e SO far: take observed data, Actual vs. predicted sale price of house
D = {x;,y;}, propose a model
class, 3y = fo(x;) = pa(ylx)

* MLE to obtain 6.

* Suppose get 99% accuracy with
cross-validation.

* IS pg (y|x)capturing the
underlying causes of y?

L ]
e Does It matter? w0 zoom T oo 000 00

Fig. 4 Ridge Prediction for Training Data.
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Breakingviews

Zillow’s failed house
flipping

Reuters

WSJ NOV. 2021 : “The company
expects to record losses of more
than $500 million from home-
flipping by the end of this year and
is laying off a quarter of its staff.”

SalePrice

| prediction: causation or correlation?

Actual vs. predicted sale price of house
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RidgePred

Fig. 4 Ridge Prediction for Training Data.



ML prediction: causation or correlation?
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ML prediction: causation or correlation?

The Washington Post @ orcmemveonn

Reporter

Business « Analysis October 23, 2020

A pélEft-arsument for wearing a

mask. in visual form

Realtime pandemic data paints a vivid picture of the relationship between mask-
wearing and the prevalence of covid-19 symptoms

Masking up

Fewer covid-19 symptoms reported in states with higher rates of mask use.

Percentage of people who know someone with covid-19 symptoms
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A classic conundrum: kidney stone treatment

e Effectiveness of treatments A vs B for
kidney stones from hospital data.
e Goal:is treatment A or B better?

Treatment A Treatment B
ra
273/350178%) | 289/350(83%

L‘Uf 5 (€55 (A+£

L\ioo



A classic conundrum: kidney stone treatment

e Effectiveness of treatments A vs B for
kidney stones from hospital data.
e Goal:is treatment A or B better?

All sizes

Large stones

Small stones

Huh? What is going on? Which treatment
would you want?

Possible explanation: doctors assign B more often
to small stones, which are easter to treat.



A classic conundrum: kidney stone treatment

« [Effectiveness of treatments A vs B for * This is an example of
kidney stones from hospital data. Simpson's paradox.
« Goal: is treatment A or B better? » With a more careful

understanding, it is not
really paradoxical.

* The stone sizeis a
confounding variable:

All sizes

Treatment A Treatment B

Large stones

Small stones
Size of stone

Huh? What is going on? Which treatment
would you want?

.

< Treatment

Possible explanation: doctors assign B more often

' . Recovery
to small stones, which are easier to treat.



One visualization of Simpson'’s Paradox
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Cholesterol

Exercise

Exercise

[The book of why: the new science of cause and effect, Judea Pearl and Dana MacKenzie.]



Are probabilistic graphical models causal models?

* Previously you learned about probabilistic A €
graphical models, like HMMs.

*In general, these models do not reason O
about causes, nor speak to causality. oG

« With additional assumptions, we can P8 E,0,T1)-

e)PER
P () P(5) PLATB,E) )

leverage the machinery of graphical models
There, e 25 anbries in IR

to reason about causality: Structural EGUATION e e, dutabiion
Models (SEM) e i S

10 numbers inelted & D)



More on Simpson’s Paradox

Formally, the paradox can be stated as follows:

1. p(y|lA) < p(y|B) (All sizes")

2. p(y|A,X) > p(y|B,X) (‘"Large stones”)  cwesen
3. p/(y A, =X) > p(y|B,=X) (“Small stones:)

Exercise

probability of recovery

X or aX
Size of stone

All sizes 273/350/(78%) | 289/350(83%) 4
Large stones  192/26%(73%) ) 55/8Q((69% | / \ |
Small stones  81/87 (93%) 234/270(87%) 4 gy ‘reatment

Recovery AorB




Revisiting Simpson’s Paradox

Formally, the paradox can be stated as follows:
1. p(ylA) < p(y|B) (Al sizes")

2. p(y|A,X) >p(y|B,X) ("Large stones")
3. p(ylA,—=X) > p(y|B,=X) (“Small stones:)

» Mathematically, no contradiction, so why the seeming paradox?

» We tend to interpret conditional events as actions, but they are not.
» Conditional events are observations.

« We'll learn more.



Revisiting Simpson’s Paradox

* We observe doctors in a hospital.

* 6., we see who gets treatment A or B, according to the doctor’s
internal decisions system (“natural inclination”).

* There is no Intervention (nNo action), just passive observation.

o [T we could redesign the experiment, how might we fix this
problem so that we avoid Simpson’s paradox? Keﬂo“c

=

Size of stone
All sizes 273/350 (78%) 289/350 (83%)
Large stones 192/263 (73%) 55/80 (69%) ) Treatment

Small stones 81/87 (93%) 234/270 (87%) Recovery




Randomized Controlled Trial (RCT)

* Are the “‘gold standard” way to conduct such
experiments.

‘ie., the use of the doctor’s internal
decision system in assigning the choice of,g o
treatment. o3 %o
;

* Replace the doctor’s decision with
one created at random—we act on the
system.

 Now the doctpr cannot more
frequently assign Treatment B \ @ rreatmen
to the smaller stones. Recovery

Size of stone




Randomized Controlled Trial (RCT)

e This is the difference between an observational
and a randomized experiment.

* The randomization process is called an
intervention (or action) in the field of causality.

Size of stone
<f§f/}::2\ €i> Treatment

Recovery

* |t is easier to extract causality using
interventional data than using
observational data.
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One-class intro to “causality”

2. Some formalism



How do we formalize actions? f ,

eeeeeeee

» We saw how intervening on upstream causes of the
treatment variable could eliminate the confounding variable.

* Actions are not conditional events, so we need a new
notation/concept beyond p(y|4, X).

* The "do" action notation looks like conditional probabilities,
butisn't, p(y = 1|do(4 = 1)).

« We'll discuss the relationship between these.



How do we formalize actions?

» We are going to work our way toward the formalism of
Structural Equation Models (SEMs).

« SEMSs are equivalent to defining a causal data-generating
process.

*i.e., think of SEMs as writing code that would generate the
data, step-by-step, through each causal mechanism.



Data vs. source code to generate it?

* SUPPOSe someone asks you to help them understand some data
they have.

* They ask if you would prefer to have the source code that
generated it, or just the data itselt. Which would you prefer?

/ Qﬂjagﬂpl pzjhb
= Ea



Data vs. source code to generate it?

* SUPPOSe someone asks you to help them understand some data
they have.

* They ask if you would prefer to have the source code that
generated it, or just the data itselt. Which would you prefer?

* The code contains more information £ "dots A cawse Y 7
(we can generate data from the tafe »
program, but not the other way % e . ﬂpf’
around). N

* Also, we can change the code and generate different data,
seeing which variables have effects on which other variables.



Programming intuition example (SEM)

Suppose you have a program to generate a «  This induces a joint

distribution step-by-step: distribution over the
_gan/\p& Bernow Ui romdon vars binary RVs, X, W, H.

U vB(Y) U~ Blhs), us ™ Bl%) « We can compute various

| probabilities of potential

: X:= U, (exercise) interest:

\o 1 1 1
5 = VX tn 0ol Uy (oo i) p(H=1)=§.§=§
t Mg omn (gh,)  pH=LW=D =g

e Thusp(H=1|W =1) >p(H =1). Does this mean W causes H?
« [Tt did, then intervening/acting on W would change H. Lets try it.




Programming intuition example (SEM)
* In this new program, the probability of H = 1 is still

1
equal to =

Suppose you have pr
distribution, step-by-
. gamP& Rernew s rar * We write this as

U, v B kY AT a do-intervention.
) X Y % Generally p(H = 1|do(W = 1)) #p(H = 1|W = 1)

1
= and call

| RS SISk
PO(N &7 \/|Q 5“6755@2-\{”\/1,— (
1
T He= et mwoeuy  (heh ) piH =1|W=1) =3

e Thusp(H =1|W =1) > p(H =1). Does this mean W cause H? i
« |fit did, then intervening/acting on W would change H.




A “program” as a Structural Equation Model (SEM)

Fach of the two programs we saw actually

define an SEM.

Fach comes with an acyclic assignment @ @ @

graph Ca”ed d CC]USC][ graph overweight heart overweight heart
disease disease

One variable causes another if there exists

a directed path between the two. | Cample Bernontl ravidom s

From the graph (also from the program) U v B o+ U ~Blys), Us~ Bx)

we see that X causes each of W and H. 20 Xe= Y, T (xercise)

Causes are your ancestors (direct or 3. Wee KT Han Ol (svonit

indirect causes). f. Hezdwe) puwohen, (et )



Formally: Structural Equation Model (SEM)

SEMs consist of:
« A list of assignments to generate a distribution on (Xq, ..., X;)

from independent random (noise) variables, (Nq, ... Npy,,).

* Must be acyclic assignments (graphical models need not be).
[ [
Example - N, N ExXoample M, N
X 1= N /olp. poa'se X = N /nolep. po'se
2 = X+ N s PN |28
Y o= (XrR)” y = (Xt2)°
model M model M[Z: = 8]

‘probability of event after applying do operator”.P{E | do(X := x)} = P pyjx.—y (E)



Causal effects

« Often X denotes the presence or absence of an
Intervention or treatment.
 p(Y =y|do(X = x)) is called the causal effect of X on Y.
* The average treatment effect is in turn given by
E[Y =y|do(X =1)] — E[Y = y|do(X = 0)].
o |t tells us how much treatment (causally) increases the
expectation of Y relative to no treatment
(action X :=0vs X = 1).



A fundamental question in causality

from observationa

When/how can we estimate causal effects

data?

E[Y =y|do(X =1)]

Fquivalently:

When/how can we express do-interventions (actions) with

—E[Y = y|do(X = 0)]

a formula that involves only conditional probabilities?

p(Y =ylX =x) #p(Y =y|do(X = x))




Problem of confounding: doing vs observing

Two variables, X and Y are confounded it in a causal graph some
confounding variable, Z, is pointing (causally effecting) each of X
and Y:

stone size e.g. ”stone size” iS exercises e.g. ”exercise” iS 3
a confounder confounder
treatment outcome
overweight heart
disease

In such a scenario,
p(H = h|W =w) # p(H = h|do(W = w))



Problem of confounding: doing vs observing

SO0 how to estimate E|Y = y|do(X = 1)] — E[Y = y|do(X = 0)]
with only observational data?

stone size

treatment

e.g. 'stone size" is exercises
a confounder

outcome

overweight heart
disease

e.qg. ‘exercise” Is a
confounder

In such a scenario, p(V = y|X =x) # p(Y = yldo(X = x))
p(H=h|W =w) #p(H = h|l|do(W =w))




Eliminate confounding from observational analysis

« To eliminate confounding, we need to hold the confounding Size of stone
variable constant in our analyses (called controlling for that variable).

« o control for kidney stone size, we must compute the treatment
effect for each group (stone size) separately.

« Then we can average the effects from each group to get the overall ~ Recovery  Treatment
effect.

pd

Critically, this
To do so, we use the adjustment formula: requires

knowledge of..?
P(Y=y|do(X :=z)=) P(Y=y|X==z,Z=2)P(Z=2z).

...of the SEM to
read off the

Then we can easily compute the treatment effect: confounding
E[Y = y|do(X = 1)] — E[Y = y|do(X = 0)]! variables!




Side note on the adjustment formula

The adjustment formula:

P(Y =y | do(X ZIP —y| X =2,Z=2)P(Z=2).

In contrast to the law of total probability:
P(Y|X) = 2 P(Y,Z|X) = z P(Y|X,Z)P(Z|X)



Z is a mediator tar deposit

Eliminating confounding between X and ¥

Should we control for as many variables as we
can get our hands on?

No: we should not control for mediators X
(variables on a “direct path” between X and Y).  smoking lung cancer
Controlling for mediators will reduce the effect

size we find between X and Y.

e.q. it control for tar deposit, then will reduce

the ability to see causal effect X - Y.




"‘Collider” variables

« (ollider variables are those with incoming effects from X and Y.
« (Conditioning on colliders can create anti-correlation between X
and Y when they are actually uncorrelated in the population
("Berkson’s law” or “collider bias”). hospital admission
e.qg.
« |f we are in the hospital and observe that an
individual has a broken leg, what does that tell us
about the patient having pneumonia?
 Since a broken leg is a sufficient cause for being in
the hospital, it "explains away” the other causes: Sheumonia broken leg
|t we condition on Z we might incorrectly conclude 7 is a collider
that X and Y are anti-correlated. between X and Y



What have we bought ourselves?

1.

We have an intuition for how confounding variables can mess up
observational analyses (e.g. stones, treatment & Simpson’s paradox).
We understand how doing is different from conditioning:

. When two variables are confounded, conditioning is the not the

same as doing.

Introduced the bare bones concepts of SEMs, and how they let us
reason about confounding and perform control/adjustment.

But all of this formalism is only as good as the SEM is an accurate
depiction of the true causal mechanisms!

How might we create an accurate SEM?
How do we know if our SEM is the correct causal model?



Determining validity of causal models

In mainstream (non-causal) ML, we can estimate how good a model
IS using cross-validation.

There is no analog for determining the validity of an SEM.

We must use domain knowledge, expertise, or RCTs.

To get a causal effects from observational studies we need to make
assumptions about the “causal story” formally using causal
models/graphs, which encode our assumptions about the world.
Given a causal graph, we can decide what variables are confounders,
and the do the appropriate computations.




EXTRA SLIDES



Proof of the Adjustment Formula (simple case)

P(Y=y|do(X :=2)=>» PY =y|X==1,Z=2)PZ=2).

Proof of Adjustment Formula. First, note that
PY =¢|do(X i=8), Z=2)=FY =y | X =@, £Z=2)

since fixing the value of Z blocks the confounding influence of Z in the causal graph (Figure|14.1).

Then, by applying the law of total probability to the model where we make the do-intervention
do(X := z), T

P(Y =y | do(X := z)) :&(Y =y |do(X :=x),Z = 2)P(Z = 2)

=) P(Y=y|X =2 Z=2)P(Z=2)

z



