
CS 189 / 289 Introduction to Machine Learning
Fall 2023 Jennifer Listgarten, Jitendra Malik HW4
Due 10/20/23 11:59 pm PT

• Homework 4 consists of both written and coding questions.

• We prefer that you typeset your answers using LATEX or other word processing software.
If you haven’t yet learned LATEX, one of the crown jewels of computer science, now is a
good time! Neatly handwritten and scanned solutions will also be accepted for the written
questions.

• In all of the questions, show your work, not just the final answer.

Deliverables:

1. Submit a PDF of your homework to the Gradescope assignment entitled “HW 4 Write-Up”.
Please start each question on a new page. If there are graphs, include those graphs in the
correct sections. Do not put them in an appendix. We need each solution to be self-contained
on pages of its own.

• In your write-up, please state with whom you worked on the homework. This should be
on its own page and should be the first page that you submit.

• In your write-up, please copy the following statement and sign your signature under-
neath. If you are using LaTeX, you can type your full name underneath instead. We
want to make it extra clear so that no one inadvertently cheats.

“I certify that all solutions are entirely in my own words and that I have not
looked at another student’s solutions. I have given credit to all external sources
I consulted.”

• Replicate all of your code in an appendix. Begin code for each coding question on
a fresh page. Do not put code from multiple questions in the same page. When you
upload this PDF on Gradescope, make sure that you assign the relevant pages of your
code from the appendix to correct questions.
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1 PCA and Least Squares
Consider the ridge regression estimator,

ŵridge := arg min
w∈Rd
∥Xw − y∥22 + λ∥w∥

2
2,

where X ∈ Rn×d and y ∈ Rn. Suppose that X has singular value decomposition X = UΣV⊤ =∑d
i=1 σiuiv⊤i , where U ∈ Rn×d, Σ ∈ Rd×d, and V ∈ Rd×d, and σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0 are the

diagonal components of Σ.

(a) Show that

ŵridge =

d∑
i=1

ρλ(σi)viu⊤i y

for some function ρλ(σ) that you will determine. What is ρλ(σ) for ŵridge? What is ρλ(σ) for
ŵOLS = arg minw ∥Xw − y∥22?

(b) The ordinary least squares regression problem on the reduced k-dimensional PCA feature space
(PCA-OLS) can be written

ŵPCA = arg min
w∈Rk
∥XVkw − y∥2,

where Vk is a matrix whose columns are the first k right singular vectors of X. This expression
embeds the raw feature vectors onto the top k principal components by the transformation
V⊤k xi. Assume the PCA dimension is less than the rank of the data matrix, k ≤ r, which implies
that the matrix of PCA embedded data matrix XVk has full rank. Write down the expression for
the optimizer ŵPCA ∈ R

k in terms of U, y and the singular values of X. Then, rewrite ŵPCA in
the same form as in part (a). In doing so, you should define the form of the PCA-OLS spectral
function ρk.

Hint: Just as Vk is a “shortened” version of V , you may want shortened version of U and Σ.
Knowing that V⊤V = I, what is the value of V⊤k V?

(c) Compare ŵOLS, ŵPCA, and ŵridge that you derived above as functions of σ and explain how
the relationships between them vary for different values of λ. How do ridge regression and
PCA-OLS deal with overfitting?

Now, we will consider a slightly different way of performing PCA, using the matrix Pk = VkV⊤k .
Throughout, you may assume σk > σk+1.

(d) Show that you can express XPk = UΣkV⊤, where Σk ∈ R
d×d is a diagonal matrix for you to

define. What is XPk if k ≥ rank(X)?

(e) Consider the ridge-PCA estimator

ŵRP := arg min
w
∥XPkw − y∥22 + λ∥w∥

2
2.
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Show that the predictor XŵRP can be written as

XŵRP =

d∑
i=1

ρk,λ(σi)uiu⊤i y,

where ρk,λ is a function for you to define.

Hint: The instructions ask you to find a formula for the predictor XŵRP, not for the parameter
ŵ.
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2 Random Feature Embeddings
In this question, we revisit the task of dimensionality reduction. Dimensionality reduction is useful
for several purposes, including visualization, storage, faster computation, etc. We can formalize
dimensionality reduction as an embedding function, or embedding, ψ : Rd → Rk, which maps
data points x1, . . . , xn with d-dimensional features to reduced data points ψ(x1), . . . , ψ(xn) with k-
dimensional features.

For the reduced data to remain useful, it may be necessary for the reductions to preserve some
properties of the original data. Often, geometric properties like distance and inner products are
important for machine learning tasks. And as a result, we may want to perform dimensionality
reduction while ensuring that we approximately maintain the pairwise distances and inner products.

While you have already seen many properties of PCA so far, in this question we investigate whether
random feature embeddings are a good alternative for dimensionality reduction. A few advantages
of random feature embeddings over PCA can be: (1) PCA is expensive when the underlying di-
mension is high and the number of principal components is also large (however note that there are
several very fast algorithms dedicated to doing PCA), (2) PCA requires you to have access to the
feature matrix for performing computations. The second requirement of PCA is a bottleneck when
you want to take only a low dimensional measurement of a very high dimensional data, e.g., in
FMRI and in compressed sensing. In such cases, one needs to design an embedding scheme before
seeing the data. We now turn to a concrete setting to study a few properties of PCA and random
feature embeddings.

Suppose you are given n points x1, . . . , xn in Rd.

Notation: The symbol [n] stands for the set {1, . . . , n}.

(a) Now consider an arbitrary embedding ψ : Rd 7→ Rk which preserves all pairwise distances and
norms up-to a multiplicative factor for all points x1, . . . , xn in the data set, that is,

(1 − ϵ)∥xi∥
2 ≤ ∥ψ(xi)∥2 ≤ (1 + ϵ)∥xi∥

2 for all i ∈ [n], and (1)
(1 − ϵ)∥xi − x j∥

2 ≤ ∥ψ(xi) − ψ(x j)∥2 ≤ (1 + ϵ)∥xi − x j∥
2 for all i, j ∈ [n], (2)

where 0 < ϵ ≪ 1 is a small scalar. Further assume that ∥xi∥ ≤ 1 for all i ∈ [n]. Show that the
embedding ψ satisfying equations (2) and (1) preserves each pairwise inner product:

|ψ(xi)⊤ψ(x j) − (x⊤i x j)| ≤ Cϵ, for all i, j ∈ [n], (3)

for some constant C. Thus, we find that if an embedding approximately preserves distances
and norms up to a small multiplicative factor, and the points have bounded norms, then inner
products are also approximately preserved upto an additive factor.

Hint: Break up the problem into showing that ψ(xi)⊤ψ(x j) − (x⊤i x j) ≥ Cϵ, and ψ(xi)⊤ψ(x j) −
(x⊤i x j) ≤ Cϵ. The constant C = 3 should work, though you can use a larger constant if you
need. You may also want to use the Cauchy-Schwarz inequality.

(b) Now we consider the random feature embedding using a Gaussian matrix. In next few parts,
we work towards proving that if the dimension of embedding is moderately big, then with high
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probability, the random embedding preserves norms and pairwise distances approximately as
described in equations (2) and (1).

Consider the random matrix J ∈ Rk×d with each of its entries being i.i.d. N(0, 1) and consider
the map ψJ : Rd 7→ Rk such that ψJ(x) = 1

√
k
Jx. Show that for any fixed non-zero vector u,

the random variable
∥ψJ(u)∥2

∥u∥2
can be written as

1
k

k∑
i=1

Z2
i

where Zi’s are i.i.d. N(0, 1) random variables.

(c) For any fixed pair of indices i , j, define the events

Ai j :=


∥∥∥ψJ(xi) − ψJ(x j)

∥∥∥2∥∥∥xi − x j

∥∥∥2 ∈ (1 − ϵ, 1 + ϵ)

 .
which corresponds to the event that the embedding ψJ approximately preserves the angles
between xi and x j. In this part, we show that Ai j occurs with high probability.

To do this, you will use the fact that for independent random variables Zi ∼ N(0, 1), we have
the following probability bound

P


∣∣∣∣∣∣∣∣1k

k∑
i=1

Z2
i

∣∣∣∣∣∣∣∣ < (1 − t, 1 + t)

 ≤ 2e−kt2/8, for all t ∈ (0, 1).

Note that this bound suggests that
∑k

i=1 Z2
i ≈ k =

∑k
i=1 E[Z2

i ] with high probability. In other
words, sum of squares of Gaussian random variables concentrates around its mean with high
probability. Using this bound and the previous subproblem, show that

P
[
Ac

i j

]
≤ 2e−kϵ2/8,

where Ac
i j denotes the complement of the event Ai j.

(d) Using the previous problem, now show that if k ≥ 16
ϵ2 log

(
N
δ

)
, then

P

 for all i, j ∈ [n], i , j,

∥∥∥ψJ(xi) − ψJ(x j)
∥∥∥2∥∥∥xi − x j

∥∥∥2 ∈ (1 − ϵ, 1 + ϵ)

 ≥ 1 − δ.

That is show that for k large enough, with high probability the random feature embedding
ψJ approximately preserves the pairwise distances. Using this result, we can conclude that
random feature embedding serves as a good tool for dimensionality reduction if we project to
enough number of dimensions. This result is popularly known as the Johnson-Lindenstrauss
Lemma.
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Hint 1: Let

A :=

 for all i, j ∈ [n], i , j,

∥∥∥ψJ(xi) − ψJ(x j)
∥∥∥2∥∥∥xi − x j

∥∥∥2 ∈ (1 − ϵ, 1 + ϵ)


denote the event whose probability we would like to lower bound. Express the complement
Ac in terms of the events Ac

i j, and try to apply a union bound to these events.

(e) Suppose there are two clusters of points S 1 = {u1, . . . ,un} and S 2 = {v1, . . . , vm} which are far
apart, i.e., we have

d2(S 1, S 2) = min
u∈S 1,v∈S 2

∥u − v∥2 ≥ γ.

Then using the previous part, show that the random feature embedding ψJ also approxi-
mately maintains the distance between the two clusters if k is large enough, that is, with
high probability

d2(ψJ(S 1), ψJ(S 2)) = min
u∈S 1,v∈S 2

∥∥∥ψJ(u) − ψJ(v)
∥∥∥2 ≥ (1 − ϵ)γ if k ≥

C
ϵ2 log(m + n)

for some constant C. Note that such a property can help in several machine learning tasks. For
example, if the clusters of features with different labels were far in the original dimension, then
this problem shows that they will remain far in the smaller dimension.Therefore, a machine
learning model can perform well even with the randomly projected data.
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3 Interpreting Neural Nets Using T-SNE
For this question, please go through the Google Colab Notebook here to complete the code.

In lecture, you have learned about how t-SNE is a method for nonlinear dimensionality reduction.
This is particularly useful for analyzing many real-world datasets in which the data can be cate-
gorized according to underlying labels. In this question, you will examine the effect that a neural
network has on the t-SNE of such a dataset.

(a) We will work with the CIFAR-10 dataset for this problem, in which the image data is catego-
rized into 10 classes. Flatten the images and take the t-SNE of the training dataset. Plot the
t-SNE embeddings and color-code each data point according to its class. Explain what you
observe.

(b) Now, we have provided a trained neural network for you to analyze. Save it to your Google
Drive so that you can access it from the Colab notebook. The model consists of several convo-
lutional layers and a few linear layers. Calculate its accuracy on the test data.

(c) Instead of taking the t-SNE of the training dataset directly, we will take the t-SNE of the
features of the neural network when the training dataset is given as input. Using the “hook”
functions provided in the notebook, save the outputs of the third convolutional layer of the
network for each input data point. Take the t-SNE of these outputs and color-code each point
according to its class. Explain what you observe.

(d) Do the same as the above except for both the first and second linear layers of the network.
Overall, what does it look like the network is doing to the data? How might this change
depending on the network’s accuracy?
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4 Astronomer’s conundrum
(Numbers completely made up; don’t use for reference.)

As machine learning invades everything in the world, you find that you can use machine learning
to classify celestial bodies (surprise, surprise!). Conveniently, you lose all your precious data and
only have the rates at which these celestial bodies lose their mass via stellar wind.

There are three types of celestial bodies that you want to classify: dwarfs, giants, and black holes.
Dwarfs slowly lose their mass; giants rapidly lose their mass; black holes, on the other hand, gain
mass by absorbing stuff (i.e., they lose mass at negative rates). We also know that 60% of all the
celestial bodies are dwarfs, 30% are giants, and 10% are black holes.

Before we continue, let’s familiarize ourselves with a kind of probability distribution called the
exponential distribution. The probability density function of an exponential distribution with pa-
rameter λ has the following form:

f (x; λ) =

λe−λx x ≥ 0,
0 x < 0.

Note the pdf decreases monotonically on [0,+∞).

The rate at which a dwarf or a giant loses its mass is exponentially distributed with parameters λd

and λg, respectively. The rate at which a black hole gains mass is also exponentially distributed,
with parameter λb.

(a) Knowing only that the expected value of a exponentially distributed random variable with
parameter λ is 1

λ
, estimate the parameter for dwarfs, λd, using a sample of the mass loss rates

of dwarfs: {0.6, 1.3, 0.1, 0.3, 0.2}.

(b) Given that λg = 1, λb = 3, and using the λe you estimated in the previous question, find the
Bayes classifier for the three classes. Assume we employ a 0-1 loss.

(c) Following on from the previous question, find the risk of your Bayes classifier. Feel free to use
WolframAlpha or some other software for the integration.
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5 Risk Minimization with Doubt
Suppose we have a classification problem with classes labeled 1, . . . , c and an additional “doubt”
category labeled c + 1. Let f : Rd → {1, . . . , c + 1} be a decision rule. Define the loss function

L( f (x), y) =


0 if f (x) = y f (x) ∈ {1, . . . , c},
λc if f (x) , y f (x) ∈ {1, . . . , c},
λd if f (x) = c + 1

(4)

where λc ≥ 0 is the loss incurred for making a misclassification and λd ≥ 0 is the loss incurred for
choosing doubt. In words this means the following:

• When you are correct, you should incur no loss.

• When you are incorrect, you should incur some penalty λc for making the wrong choice.

• When you are unsure about what to choose, you might want to select a category correspond-
ing to “doubt” and you should incur a penalty λd.

In lecture, you saw a definition of risk over the expectation of data points. We can also define the
risk of classifying a new individual data point x as class f (x) ∈ {1, 2, . . . , c + 1}, and reason about
what the risk would be for all possible values of x. We define the risk as

R( f (x)|x) =
c∑

i=1

L( f (x), i) P(Y = i|x).

(a) Show that the following policy fopt(x) obtains the minimum risk:

• (R1) Find the non-doubt class i such that P(Y = i|x) ≥ P(Y = j|x) for all j, meaning you
pick the class with the highest probability given x.

• (R2) Choose class i if P(Y = i|x) ≥ 1 − λd
λc

• (R3) Choose doubt otherwise.

Hint: It will first help you to approach the risk function on a case-by-case basis to help simplify
the expression. What is the risk if we choose the “doubt” class? What is it if we choose a non-
doubt class as our prediction?

In order to prove that fopt(x) minimizes risk, consider proof techniques that show that fopt(x)
“stays ahead” of all other policies that don’t follow these rules. For example, you could take a
proof-by-contradiction approach: assume there exists some other policy, say f ′(x), that mini-
mizes risk more than fopt(x). What are the scenarios where the predictions made by fopt(x) and
f ′(x) might differ? In these scenarios, and based on the rules above that fopt(x) follows, why
would f ′(x) not be able to beat fopt(x) in risk minimization?

(b) How would you modify your optimum decision rule if λd = 0? What happens if λd > λc?
Explain why this is or is not consistent with what one would expect intuitively.
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