
CS 189/289A Introduction to Machine Learning
Fall 2023 Jennifer Listgarten, Jitendra Malik Midterm

• Please do not open the exam before you are instructed to do so.

• Electronic devices are forbidden on your person, including cell phones, tablets, head-
phones, and laptops. Leave your cell phone off and in a bag; it should not be visible during
the exam.

• The exam is closed book and closed notes except for your one-page 8.5×11 inch cheat sheet.

• You have 1 hour and 50 minutes (unless you are in the DSP program and have a larger time
allowance).

• Please write your initials at the top right of each page after this one (e.g., write “JD” if you
are John Doe). Finish this by the end of your 1 hour and 50 minutes.

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets.

• For multiple choice questions, fill in the bubble for the single best choice.

• For short and long answer questions, write within the boxes provided. If you run out of space,
you may use the last four pages to continue showing your work.

• The last question is for CS289A students only. Students enrolled in CS189 will not receive
any credit for answering this question.

Your Name

Your SID

Name and SID of student to your left

Name and SID of student to your right

Doing anything fun this weekend?

Favorite ML algorithm?

⃝ CS 189

⃝ CS 289A
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1 Multiple Choice
For the following questions, select the single best response. Each question is worth 1.5 points.

1. Which of the following is a problem with the sigmoid activation function, in the context of
deep neural networks?

⃝ Sigmoid is prone to vanishing gradients at extreme values.

⃝ Sigmoid can take on negative values.

⃝ Sigmoid is non-linear, which provides less representation power.

⃝ Sigmoid is numerically unstable when the input is large.

2. Which of the following is not a component/feature of standard Transformer models?

⃝ Masked decoding, which prevents attention lookups into the future.

⃝ Transformer model training can be highly parallelized.

⃝ Multi-head attention, which allows for attending to different parts of the sequence
(e.g. long-range vs. short-range dependencies).

⃝ The runtime complexity of attention is O(n log n), where n is the input length.

3. Consider a multivariate Gaussian distribution with covariance matrix Σ =
2 1
1 2

. Which

of the following correctly corresponds to the direction of the major axis of the Gaussian’s
isocontours?

⃝

 −1
√

2
1
√

2


⃝

 1
√

2
1
√

2


⃝

01


⃝

10


4. Suppose you train a logistic regression model with cross-entropy loss. Assume that you’re
updating the model using gradient descent with a sufficiently low learning rate. Which of the
following are valid ways to initialize the parameters? Assume that numerical stability is not an
issue (i.e. when running the model, you don’t pass in an invalid argument to a function, such
as 0 to log).

⃝ Initialize all parameters with 0’s

⃝ Initialize all parameters with 1’s

⃝ Randomly initialize parameters

⃝ All of the above
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5. Suppose we want to apply dimensionality reduction to a high-dimensional dataset X. Let
X = UΣVT be the singular value decomposition (SVD) of X. Which of the following regarding
PCA is false?

⃝ The principal components must be orthogonal to each other.

⃝ The principal components are given by the eigenvectors of X.

⃝ Multiplying the first k principal component scores UkΣk (where Uk is the first k
columns of U and Σk is the top-left k×k entries of Σ) by their corresponding principal
axes VT

k (where Vk is the first k columns of V) gives us a matrix of rank k.

⃝ The variance along the ith principal component axis is given by σ2
i .

6. Which of the following is not a feature of a standalone convolution layer? Assume that there
is no pooling layer afterwards.

⃝ Local Connectivity: The convolution layer assumes that local regions in the input
are more relevant for learning features.

⃝ Parameter Sharing: The same set of weights is used across different parts of the
input in the convolution layer.

⃝ Translational Invariance: The convolution layer is designed to produce an output
that is insensitive to translations in the input.

⃝ Channel-wise Feature Learning: In multi-channel inputs (like color images), each
filter can learn features that are channel-specific.

7. Consider adding the elastic net regularization term λ1∥w∥22 + λ2||w||1 to linear regression. If we
want our weights to be smaller, but dislike having many completely zero weights, what is most
likely to be the best choice?

⃝ Increase λ1

⃝ Increase λ2

⃝ Decrease λ1

⃝ Decrease λ2

8. PCA and t-SNE are techniques often used for representing high-dimensional data in a lower-
dimensional space. Which of the following is true regarding these two techniques? Assume
that PCA is run without a basis expansion (e.g. a polynomial basis expansion).

⃝ Both PCA and t-SNE can accurately capture non-linear relationships in the data.

⃝ t-SNE aims to minimize the pairwise distances in the data whereas PCA aims to
maximize the variance of the data.

⃝ Both PCA and t-SNE have convex optimization problems.

⃝ t-SNE aims to maximize the pairwise distances in the data whereas PCA aims to
minimize the variance of the data.
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9. Consider the optimization problem

min
w

∥∥∥Xw − y
∥∥∥ + g(w)

for some g(w). We assume that P(y|x; w) = N(w⊤x, σ2). The minimizer w∗ of this problem can
be thought of as a MAP solution with which prior P(w)?

⃝ 1
√

2πσ
exp

(
−g(w)2

2σ2

)
⃝

exp(−g(w))∫
w′ exp(−g(w′)) dw′

⃝ g(w) exp
(
−∥w∥

)
⃝ 1

2σ exp
(
−|g(w)|
σ

)
10. When training a neural network with attention blocks, which of the following would most

likely cause outputs to become NaNs? Assume numerical instability is not an issue in the
inputs.

⃝ Having large variation in your attention scores. Recall attention scores are dot prod-
ucts between projected keys and queries.

⃝ Not normalizing keys and queries before taking their dot product. This means keys
and queries may not have norm 1.

⃝ Apply a mask to all of our keys. Masking prevents the model from attending to
certain keys.

⃝ Randomly initializing our neural network weights with i.i.d. random variables that
have unbounded expectation.

11. Which of the following k-means cluster assignments could be a possible result after running
k-means to convergence for 2 clusters?

(a) (b) (c) (d)

⃝ (a)

⃝ (b)

⃝ (c)

⃝ (d)
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2 Short Answer
1. In class you learned about regularizing linear regression with an L1 penalty (LASSO). Now,

instead consider an L0.5 penalty on the weights. A plot of the isocontours of the L0.5 norm is
shown below:

How will the sparsity of the L0.5 penalized linear regression compare to that of LASSO? Select
the best answer choice and explain your answer.

⃝ L0.5 will have more sparse solutions than LASSO.

⃝ L0.5 will have less sparse solutions than LASSO.

2. We have a dataset with binary labelsD = {(xn, yn)}Nn=1 where yn = {0, 1}. Write the formula for
the binary cross entropy loss between a model’s predicted probabilities for the positive class
{pθ(y = 1|xn)}Nn=1 and the true labels {yn}

N
n=1. Assume that the loss is for the whole dataset.

Please box your final answer.
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3. Suppose you have two coins. Coin A has probability p of landing heads, and coin B has
probability 3p of landing heads. Suppose you flip both coins and get the following result:
Coin A: T
Coin A: H
Coin B: H
Coin B: H
Coin A: T
Coin B: H

What is the maximum likelihood estimate for p? Please box your final answer.

4. For your latest Transformer model, you have devised this positional encoding scheme:

PE(x,i) =

(
x (mod 189)

189

)i/dmodel

where x is the position, i is the index of the feature dimension, and dmodel is the total number of
dimensions in an input embedding. This value is added to index i of the x-th token’s embedding
vector.

Describe in one or two short sentences what problems you may encounter with this encoding,
as well as what inputs you would encounter them on.
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5. Suppose that X ∈ R3 is a random vector with a multivariate Gaussian distribution that can

be written as AZ + µ, where Z ∼ N(0, I3), µ = [1, 1, 1]T and A =


1 2 0
2 0 1
0 1 2

. Compute the

correlation matrix C corresponding to X. In a correlation matrix, entry Ci j =
cov(Xi,X j)√
var(Xi)var(X j)

,

where Xi, X j are the i and jth entries of X. Please box your final answer.
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6. In this problem, we consider a solution to the vanishing gradient problem: residual connec-
tions.

To examine this phenomenon, let’s consider a slightly different residual layer than what was
presented in lecture. Our layer processes vector inputs xin ∈ R

d. Let W ∈ Rd×d and b ∈ Rd.
Mathematically, a layer is represented as:

xout = xin +max(Wxin + b, 0)

Compute the Jacobian ∂xout
∂xin

for this residual block and explain why this prevents the gradients
from dying at this layer. For this problem, you may assume that Wxin + b , 0, and therefore
we don’t need to worry about the derivative at the non-differentiable point. Box your answer
for ∂xout

∂xin
.

Hint: Start by deriving the formula for entry (i, j) of the Jacobian: ∂xout,i

∂xin, j
. Then, assemble

the Jacobian matrix.

7. Say we have four points: (0, 1), (0, -1), (1, 1), (1, -1). Using PCA, find the first principal
direction.
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8. Let f (x) = Wx be parameterized by a d × d matrix W. Suppose a data point x ∈ Rd has a
label y ∈ Rd associated with it. We use the L2 loss function L(W) = ∥ f (x) − y∥22 = ∥Wx − y∥22
to describe the error between our prediction f (x) and the ground truth label y. Recall that a
gradient update step for W looks like W (t+1) = W t − α ∗ ∇W L(W t), where α is our learning
rate. Let us now consider the problem of selecting an optimal α. We can do this by solving the
following optimization problem:

α⋆ = min
α

L(W − α∇W L(W))

What is α⋆ in this case? Please box your final answer for α⋆.

Hint 1: Recall from Homework 1 that ∇W L(W) = 2(Wx − y)x⊤.

Hint 2: Performing a change of variables z = Wx − y may help to simplify algebra.
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9. Consider the function f : Rd 7→ Rd whose components are given by

fi(x) =
x2

i∑d
k=1 x2

k

for i = 1, . . . , d and x ∈ Rd.

(a) Find an expression for ∂ fi
∂x j

. Hint: It may help to consider two cases: i = j and i , j.

(b) We can see that 0 ≤ fi ≤ 1 for each i = 1, . . . , d and
∑d

i=1 fi = 1. Thus, f normalizes the
input vector x to a probability distribution, just like Softmax does! That said, what is one way
in which our function f graphically differs from the Softmax function?
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3 PCA Fundamentals

Principal Component Analysis (PCA) is a commonly used technique for dimensionality re-
duction. Suppose we are given a set of data points D = {xn ∈ R

D : n = 1, ...,N}. PCA can
be viewed as a change of basis that represents each data point xn as a weighted combination
of a new set of basis functions w1, ...,wL ∈ R

D, where the weights are given by zn ∈ R
L. That

is, each xn is approximated by
∑L

k=1 znkwk. Here we explore one of the many aspects of this
change of basis operation.

(a) As a warm up exercise, show that the sample covariance matrix Σ is PSD, where

Σ =
1
N

N∑
n=1

(xn − µ)(xn − µ)T

and µ = 1
N

∑N
n=1 xn is the sample mean.

(b) One way to view the change of basis that PCA performs is that it is the optimal solution
that minimizes the average reconstruction error of the data:

L(W,Z) =
1
N

∥∥∥X − ZWT
∥∥∥2

F
=

1
N

N∑
n=1

∥xn −Wzn∥
2

where X ∈ RN×D is the data matrix, W ∈ RD×L is the matrix of “latent factors”, and
Z ∈ RN×L is the matrix of “latent vectors”.
Suppose we wish to minimize the error, subject to the constraint that W is an orthogonal
matrix. We will first find the optimal Z and then find the optimal W when L = 1. Express
and expand out the reconstruction error as a function of w1 and its associated coefficients
z1 = [z11, ..., zN1] ∈ RN , and show the optimal solution for each entry of z1, zn1, is zn1 =

wT
1 xn.
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(c) Given the optimal solution of zn, show the optimal solution for w1 corresponds to finding
the largest eigenvalue of some matrix. What is the matrix in the case in which the data
is centered, i.e. the sample mean µ = 0? Hint: This will require using constrained
optimization.
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(d) It is often said that the optimal solution for w1 that minimizes the reconstruction error
corresponds to maximizing the sample variance of the projected data. Show that this is
the case when the data is centered. Give a brief explanation for what might go wrong
when the data is not centered.
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4 Motivating Logistic Regression

In class, you learned that a common justification for logistic regression is the fact that Gaussian
class-conditional probability densities result in a posterior probability p(y|x) that takes the
form of a logistic function with a linear argument, assuming the Gaussians all have the same
variances. In this question, we will explore the case when this assumption does not hold true.

Consider the case in which we perform binary classification for two classes y = 0 and y = 1.
Suppose that we know both classes have Gaussian class-conditionals, i.e. P(X |Y = 0) ∼
N(µ1, σ1) and P(X |Y = 1) ∼ N(µ2, σ2). For simplicity, we assume that the covariance matrix
for each class is diagonal with the same variance along each dimension (but still with differing
variances between the two classes). Recall the Gaussian PDF formula:

f (x) =
1

σ
√

2π
exp

− (x − µ)2

2σ2


We also know the two classes have prior probabilities P(Y = 0) = π1 and P(Y = 1) = 1 − π1.

(a) Show that the posterior distribution P(Y = 0 | X) is a logistic function with a quadratic
argument α||x||2 + βT x + γ. What are α, β, and γ? Box your answers for each.
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(b) Consider the decision boundary, i.e. the point at which P(Y = 1 | X) = P(Y = 0 | X). As-
sume that π1 = 0.5, i.e. the prior probabilities of the two classes are the same. How does
the shape of the decision boundary compare qualitatively when the two class variances
are the same vs. not the same? 1-2 sentences is enough.
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5 Laplacian Discriminant Analysis

You are playing a fun game with Alice and Bob: in each turn, either Alice or Bob sends you a
number, and you have to guess who sent it!

You know the following about Alice and Bob’s behavior:

• The probability that Alice sends the number is πA and the probability that Bob sends the
number is πB = 1 − πA.

• Each person generates numbers from an independent Laplace distribution, with parame-
ters (µA, b) for Alice, and (µB, b) for Bob. (Note that the second parameter is the same for
both.)

• µA > µB.

The Laplace distribution is a continuous distribution. It is parameterized with two values (µ, b),
and its probability density function is as follows:

f (x) =
1

2b
exp

(
−
|x − µ|

b

)
(a) You receive a number x and you want to determine if it’s more likely to be from Alice or

Bob. What kind of classifier are you trying to build?
⃝ Generative
⃝ Discriminative

(b) Compute the probability that the number is from Alice. Box your final answer.
Your answer should be expressed in the form 1

1+exp(−z) , where z is some expression that
may (or may not) be in terms of πA, πB, µA, µB, x, b, and constants.
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(c) You decide to play a new game. All the conditions stay the same, except this time, Alice
and Bob both send you a number, and you have to match the two numbers to their senders!
You receive two numbers: x1 > x2 > µA. To maximize the probability of being correct,
which one should you guess to be Alice’s number? Justify your answer.
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6 Machine Unlearning: Linear Regression

We often care about validating our model on data that wasn’t used to train it. We’ve seen that
K-fold cross validation can be a powerful way to ensure that our models are robust to dropping
out chunks of the data.

In this question, we’re going to engage with a version of K-fold validation called leave-one-
out validation. Let’s say we have a design matrix X ∈ Rn×d and a corresponding set of labels
Y ∈ Rn. As the name suggests, we train n different models leaving out a single data point each
time and then test our model on this held out datapoint.

Typically, we denote the model fit on all the data except the ith point with a subscript [i], so
the model trained without (Xi,Yi) is f[i]. The leave-one-out error is therefore defined as

Jloo(X,Y, f ) =
1
n

∑
i

loss( f[i](Xi),Yi)

This kind of validation is quite cumbersome for most models, but we’ll see for linear models
and the squared error loss it can actually be computed efficiently. We’ll then explore the
consequences of this fact for updating linear models with new data.

(a) First compute (XT
[i]X[i])−1 in terms of (XT X)−1 and Xi, the ith row of X. You may use the

Sherman-Morrison identity without proof, which is: Let A ∈ Rk×k and u, v ∈ Rk, then(
A + uvT

)−1
= A−1 −

A−1uvTA−1

1 + vTA−1u
.

Hint: Try writing XT X in outer product form.

Midterm,©UCB CS 189/289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 19



initial here

(b) Write out the closed form solution for β[i], the coefficients of a linear model trained with-
out the ith datapoint. Your answer should be in terms of β (the coefficients fitted on all
the data), Xi, ei = XT

i (XT X)−1XT Y − Yi, (XT X)−1, and hi = XT
i (XT X)−1Xi.

Hint: Begin by writing out the closed form solution for β[i], then plugging in part (a).

(c) Finish by computing the leave-one-out error e[i] in terms of the original training error
ei = Ŷi − Yi and hi.
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(d) Use parts (a) and (b) to show how you could add a single datapoint to an existing OLS
fit given just the new point Xn+1, an updated covariance matrix (XT

n+1Xn+1)−1 = (XT X +
Xn+1XT

n+1)−1, and the original fit β.
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7 Xavier Initialization for Neural Networks (CS 289A Only)

When you optimize a neural network’s weights using Gradient Descent, you must start with an
initial guess for your model parameters that is then iteratively updated during training. Before
the advent of modern deep learning techniques like Batch Normalization, the way in which
these parameters were initialized could significantly impact model training: more often than
not, poor model performance was attributed to poor weight initialization. In this problem, we
will think about a scheme for initializing model weights that leads to stable training.

Consider a feed forward neural network with L layers. Assume that we use the activation
function σ(·) after each layer. Suppose the input to layer l is the n[l−1]-dimensional vector x[l−1]

and let this layer have an n[l] × n[l−1] weight matrix W [l] and n[l]-dimensional bias vector b[l].
Then, the forward propagation equations for layer l are

z[l] = W [l]x[l−1] + b[l]

x[l] = σ(z[l])

By convention, we let x[0] and x[L] be the input to and the output of the whole network, respec-
tively. We denote x[l]

k (consequently b[l]
k and z[l]

k ) to be the kth component of x[l] (consequently
b[l] and z[l]). Similarly, we denote W [l]

i j to be the i jth component of W [l].

(a) Suppose σ(x) = x, i.e., the identity activation function, is used throughout the neural
network. For the sake of simplicity, assume that each b[l]

k is initialized to 0. Furthermore,
assume that

• Each x[0]
k ∼ X is independent and identically distributed, where X is a distribution with

E[X] = 0.
• Each W [l]

i j ∼ Wl is independent and identically distributed, where Wl is a distribution
with E[Wl] = 0.
• All x[0]

k and W [l]
i j are mutually independent.

Find an expression for Var(x[1]
k ) in terms of n[0], Var(W1) and Var(X).

Hint: you may use the following fact without proof: if Y and Z are independent, zero-mean
random variables, then Var(YZ) = Var(Y) Var(Z).
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(b) Show that E[x[1]
k ] = 0.

(c) It turns out each x[1]
k (for 1 ≤ k ≤ n[1]) has the same zero-mean distribution. In fact,

by induction, one can show that each x[l]
k (for 1 ≤ k ≤ n[l]) has the same zero-mean

distribution, which we denote by Xl, and that each x[l]
k is mutually independent of each W [l]

i j .
Then, operating under the same assumptions as part (a), find an expression for Var(Xl) in
terms in terms of n[l−1], Var(Wl) and Var(Xl−1).
Hint: you may use the following fact without proof: if Y and Z are independent, zero-mean
random variables, then Var(YZ) = Var(Y) Var(Z).
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(d) Show that setting Var(Wl) = 1
n[l−1] will yield Var(XL) = Var(X), i.e., each component of the

network input and output will have the same variance. This weight initialization where

W [l]
i j ∼ N

(
0,

1
n[l−1]

)
is called the Xavier initialization.

(e) What happens when Var(Wl) > 1
n[l−1] instead? What about Var(Wl) < 1

n[l−1] ?
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You may use this page to show extra work. Clearly mark your work with the problem number
here, and also mention in the problem-specific box that your work is continued here.
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You may use this page to show extra work. Clearly mark your work with the problem number
here, and also mention in the problem-specific box that your work is continued here.
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You may use this page to show extra work. Clearly mark your work with the problem number
here, and also mention in the problem-specific box that your work is continued here.
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You may use this page to show extra work. Clearly mark your work with the problem number
here, and also mention in the problem-specific box that your work is continued here.
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